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Abstract. Zero-sum games have been used to model cybersecurity scenarios
between an attacker and a defender. However, unknown and uncertain environ-
ments have made it difficult to rely on a prescribed zero-sum game to capture the
interactions between the players. In this work, we aim to estimate and recover an
unknown matrix game that encodes the uncertainties of nature and opponent based
on the knowledge of historical games and the current observations of game out-
comes. The proposed approach effectively transfers the past experiences that are
encoded as expert games to estimate and inform future game plays. We formulate
the game knowledge transfer and estimation problem as a sequential least-square
problem. We characterize the structural properties of the problem and show that
the non-convex problem has well-behaved gradient and Hessian under mild as-
sumptions. We propose gradient-based methods to enable dynamic and adaptive
estimation of the unknown game. A case study is used to corroborate the results
and illustrate the behavior of the proposed algorithm.
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1 Introduction

In many adversarial scenarios, such as a battlefield and cyber threats, a defender plays
against unknown opponents in uncertain environments. The prior knowledge or experi-
ence of the game may provide the defender a way to estimate the game by leveraging
his past experience with the environment, or transfering other experiences of his own or
from someone else. These experiences are encoded or represented by games that capture
critical characteristics of an adversarial entity, including the incentives, the capabilities,
and the information structures. The direct estimation of the game provides the defender
a sufficient situational awareness of the unknown environment and enables dependable
reasoning for making decisions.

Dealing with uncertainties in games has a long history. Harsanyi in 1967 [9] in-
troduced Bayesian games and the notion of “type”, encapsulating all uncertainties in
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payoffs, actions, and psychological attributes of a player into the “type” space to over-
come the technical difficulty created by the reasoning using infinite hierarchies of beliefs
[15]. Built on Harsanyi’s Bayesian game framework, many recent efforts have been
on identifying and estimating structures of the game model, given the data of multiple
equilibria [12,23] or the observed frequency of choices [10,19].

The estimation of games within Bayesian frameworks often requires the structural
knowledge of baseline game models. However, in many security applications, this
knowledge may not be directly available. It is difficult, if not impossible, to specify the
set of uncertain parameters and the unknowns in security games, since mapping out the
structural unknowns can be a challenging task, let alone the unknown unknowns. Hence,
there is a need to shift the paradigm from a Bayesian-based approach to a completely
data-driven and model-agnostic one. To this end, this work presents an estimation
framework that is purely based on the past experiences and the real-time observations.
We focus on the estimation of finite zero-sum static games, which are central to security
applications, such as in network configurations [24], network provisioning [20], and
jamming attacks [25].

We formulate MASAGE, a sequential least-square estimation problem over the game
space, which is formed by the past transferable experiences. This approach dispenses
with the knowledge of parametric uncertainties and the payoff structure of the game
but takes the game as an object for estimation instead. In this work, we focus on a
class of linear game estimators. Under mild assumptions, the static least-square game
estimation problem is probably solvable by gradient-based algorithms. We extend the
static framework to its sequential counterpart, in which the security game is estimated
dynamically based on sequential observations. We characterize the structural properties
of the estimation problem and show the convergence properties of the gradient-based
data-driven adaptive algorithm.

2 Related Work

Game identification and estimation [18,19,2,10,12] have been investigated in economics
literature. Hotz et al. in [10] have first considered a conditional choice probability
estimator of the structural parameters in dynamic programming models. Following
this work, [18,19] have proposed an identification and estimation framework based on
time-series data using observed choices. They have considered a class of asymptotic
least-square estimators defined by the equilibrium conditions. For discrete games and
normal-form games, Bajari et al. in [1] and [2] have proposed simulation-based estimators
for parametric games using algorithms that compute all the game equilibria. With a focus
on the multiplicity of equilibira, Jovanovic in [12] has highlighted that the information of
multiple solutions affects the statistical inference strategy. These works share a common
structure that uses equilibria data from firms or companies to estimate the structural
parameters of static or dynamic models. Our work studies this problem from a model-
agnostic perspective by formulating the estimation directly on the game space. This
work focuses on the class of zero-sum matrix games, which plays an important role in
cybersecurity.
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The analysis of the least-square game estimation problem relies on the perturbation
theory of matrix games. Two closely related works are [8] and [6]. Gross in [8] has
considered a general case of real matrices and computed the left and right value derivative
with respect to arbitrary matrix entries. The author has observed that when the matrix has
only one Nash equilibrium pair, the derivative exists, and the right and left derivatives
are equal. Cohen et al. in [6] and [7] have studied the completely mixed matrix games
and bi-matrix games, and have given the value derivatives with respect to the matrix
entries. The authors have provided useful results of strategy derivative and higher-order
derivatives of saddle-point values.

3 Problem Formulation

3.1 Preliminary

Game Description Consider a two-player zero-sum finite game G represented by
a triplet 〈N ,{A1,A2},{u1,u2}〉. Here, N = {P1,P2} is the player set containing a
defender P1 and an attacker P2; A1 = {1,2, . . . ,N1} and A2 = {1,2, . . . ,N1} are action
sets for P1 and P2, respectively, with N1 = |A1| and N2 = |A2|; u1 : A1×A2→ R and
u2 : A1×A2→ R are the utility functions of P1 and P2, respectively. Since the game
is zero-sum, u1 + u2 = 0. The zero-sum game can be fully characterized by a single
matrix of the size N1×N2. P1 is the row player. P2 is the column player. Each row and
column is indexed by the corresponding actions of the player. Each entry of the matrix is
associated with a payoff value that is viewed as cost to P1 but utility to P2.

We consider the scenario where the payoffs of the games are uncertain. To capture
the uncertainties, we define a random matrix M : Ω → RN1×N2 over an underlying
probability space (Ω ,F ,P). Each entry of matrix M is a random variable defined on the
probability space. The underlying distributions of the random variables are unknown to
the players. Let val(·) be the saddle-point value of a matrix game. Random matrix game
M gives rise to its associated game value z = val(M).

Expert Games and Game Estimation We consider the following scenario. The players
do not know their game prior to the play. However, they are given a set of expert games
that they have played before and know that their game will be similar and related to the
set of expert games. The game is determined by nature, i.e., ω ∈ Ω is realized when
the game starts. Let M̄ ∈ RN1×N2 denote this game. The players cannot observe ω but
can observe the outcome of the play of the game, i.e., the value of the sampled game M̄,
denoted by z̄. M̄ is also called the target game as the goal of the sequential play of the
game is to estimate its value based on the prior information of the expert games and the
sequential observations of z̄. The formulation of this problem will be made clear later in
Subsection 3.2.

A Nonlinear Least-Square Estimator To provide a formal framework of the estimation
problem, we first consider the following non-sequential estimation problem. At the start
of the game, the defender has a set of S expert games M = {M1, . . . ,MS} that is non-
random and observable, where S∈N is the number of expert games; Let S := {1, . . . ,S},
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Mi, i ∈S are informed to the player from past interactions or experiences that satisfy
following properties:

(i) All expert games have nonzero saddle-point values, i.e., for all i ∈S ,

val(Mi) 6= 0; (1)

(ii) each pair of expert games are not strategically equivalent, i.e., for all i, j ∈S ,

∀c ∈ R, Mi 6= cM j; (2)

(iii) entries of expert games are bounded, i.e., for all i ∈S , a ∈A1, b ∈A2,

∃B ∈ R, (Mi)ab ≤ B. (3)

The defender can observe the value of the game of the unknown game M̄, z̄ before the
play of the game. The information that is available to the defender is I = {M , z̄}. The
goal of the defender is to find an estimator µ : I → RN1×N2 that maps the information
set of the defender to find an estimate M̂ = µ(I). Here, I denotes the set of all possible
information to the defender.

We consider a class of linear estimators L(M ;α) that are parameterized by a weight
vector α ∈ X , where X ⊆ RS is the parameter space, α = [α1,α2, . . . ,αS]

T. The
estimators take the following form:

M̂ = L(M ;α) =
S

∑
i=1

αiMi (4)

From (4), we can see that the linear estimator is taken as the linear combination of
expert games. A natural criterion of an optimal estimator is the one that minimizes the
error between the outcomes of the estimated game and the target game. The outcome of
the estimated game is given by val(L(M ;α)), while the outcome of the target game is
assumed to be observable by the defender, which takes the value of z̄. Hence, the residue
error of the estimation is

ε = z̄−val(L(M ;α)) (5)

An optimal linear estimator µ∗ = L(M ;α∗) with the optimal parameters α∗ is the one
that minimizes the residue error (5) using the following squared error criterion J(α):

J(α) := |val(L(M ;α))− z̄|2. (6)

To sum up, finding an optimal linear estimator is equivalent to solve the following
finite-dimensional unconstrained problem (SP):

(SP) min
α

J(α) (7)

The solutions to optimization problem (SP) provide a foundation for sequential
estimation of the game. One trivial solution to the problem is to let α? such that J(α?) =
0. Consider ratio κi := z/val(Mi), i ∈ S . A subset of optimal points α? would be
{κiei}S

i=1, where {ei}S
i=1 represents the standard basis of RS. These vectors are trivial
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solutions obtained by degenerating the set of multiple expert games into a singleton. The
resulting estimation is a scaling of a chosen expert game. It is apparent that they are
strategically equivalent games. However, these trivial solutions are arguably biased in
terms of combining the information given by the experts and we need optimal points
that take multiple expert games into consideration. In section 4, we study J(α) further to
develop iterative algorithmic solutions.

3.2 Dynamic Linear Estimation Problem

Building on the estimation problem above, we formulate a dynamic linear estimation
problem. Consider that the game is played sequentially. At the beginning of each time
step t, the player has cumulated t expert-game sets {M (t ′)}t

t ′=1. At step t, an unknown
game M̄(t) is sampled from the underlying probability space (Ω ,F ,P). The defender
can observe the outcome of the play z̄(t), which is the saddle-point value of the un-
known game, i.e., z̄(t) = val(M̄(t)). By the end of the play, the defender has accumulated
information I(t) = { {M (t ′)}t

t ′=1,{z̄
(t ′)}t

t ′=1 }.
The goal of the defender is to find a sequential estimator µt(I(t)) to estimate a

sequence of unknown games M̄(t) based on his accumulated information.
At each step t, we consider a linear estimator µt(I(t)) taking the form of

µt(I(t)) := L(M (t);α) := α1M(t)
1 +α2M(t)

2 + . . .+αSM(t)
S .

Here, the linear mapping L : RS→ RN1×N2 is parameterized by a fixed vector α . At time
t, the optimal parameters α∗(t) minimize the time-average accumulated residue error as
follows:

J(t)(α) =
1
t

t

∑
t ′=1
|z̄(t ′)−val(L(M (t ′);α))|2. (8)

It is clear that J(t) depends on the samples of the game at each step t. We formulate
the nonlinear regression problem at time t called DP-t.

(DP− t) min
α

J(t)(α) (9)

Discussion on Asymptotic Behavior The formulated problem coincides with the stan-
dard form of nonlinear regression with a linearly parameterized function class, in which
the following presumption holds:

z̄t ′ = val(L(M (t ′);α0))+ ε
(t ′) t ′ = 1, . . . , t (10)

where ε(t
′) are i.i.d. errors with zero mean and bounded variance, and α0 is the true

parameter. The least-square estimator α∗(t) is said to be strongly (weakly) consistent if
α∗(t)→ α0 a.s. (in prob.) as t→ ∞ [22].

The strong or weak consistency of α∗(t) depends on a series of conditions rigorously
proved in [11,14,22]. Under the assumption of consistency, α∗(t) is asymptotically
unbiased and induces minimum variance. In such case, while the estimation of game
matrix is not necessarily unbiased, it still provides valuable information, since the value
of estimated game enjoys asymptotic optimality.
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4 Objective Function Analysis

In this section, we provide analytical results to give theoretical insights on the problem.
We first characterize several properties of the objective functions including their continu-
ity, differentiability, and convexity. In the second part of this section, we study parameter
perturbations on the objective function.

4.1 Basic Properties

Let v(t)(α) be the error between observations and value of output game at step t for a
linear estimator with parameter α , given by

v(t)(α) := val(L(M (t);α))− z̄(t) = val(L(M (t);α)− z(t)E) (11)

Let f (t)(α), and g(t)(α) be the saddle-point strategies of estimated game M for a given
α . The error (11) can be rewritten as

v(t)(α) = f (t)T(α)(L(M (t);α)− z(t)E)g(t)(α)

where E ∈ RN1×N2 is a matrix with all entries being 1. In dynamic estimation problems,
the accumulated squared error up to time t is J(t)(α) = ∑

t
t ′=1

(
v(t
′)(α)

)2.

Lemma 1. v(t)(α) is continuous differentiable in domain RS, so is J(t)(α).

Proof. From [21], |val(A)−val(B)| ≤ d(A,B) for any real matrices A,B ∈ RN1×N2 with
metric d(A,B) = maxi∈A1, j∈A2 |Ai j−Bi j|. For sufficiently small ε and all-one S dimen-
sion vector 1S,

|v(t)(L(M ;α + ε1S))− v(t)(L(M ;α))| ≤ ε max
i∈A1 j∈A2

| ∑
s∈S

(Ms)i j|.

v(t)(α) is continuous as the term maxi∈A1 j∈A2 |∑s∈S (Ms)i j| is bounded. Picking the
‖ · ‖2 norm, we arrive at

lim
ε→0

|v(t)(L(M ;α + ε1S))− v(t)(L(M ;α))|
‖α + ε1S−α‖2

≤ 1
‖1S‖2

max
i∈A1 j∈A2

| ∑
s∈S

(Ms)i j|.

Thus, given bounded expert game matrices, v(t)(α) is continuous differentiable in RS,
and so is J(t)(α) since it is a sum of squares of v(t

′)(α). ut

Lemma 2. J(α) is non-convex in domain RS.

Proof. We prove the result by contradiction. Suppose that J(α) is convex in the convex
domain RS, then it must satisfy that ∀λ ∈ [0,1] and ∀α1,α2 ∈ RS,

J(λα1 +(1−λ )α2)≤ λJ(α1)+(1−λ )J(α2). (12)
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Pick arbitrary λ ∈ (0,1) and two fundamental solutions: α1 = κ1e1, α2 = κ2e2 in (12)
and yield

|val(L(M (t);λα1 +(1−λ )α2))− z̄|2 ≤ 0

⇒ val
( M2

val(M2)
+λ (

M1

val(M1)
− M2

val(M2)
)
)
= 1

Thus, for bounded matrix M1 and M2 which has nonzero saddle-point values, it must
hold that

M1 =
val(M1)

val(M2)
M2,

which contradicts to property (2). This contradiction indicates that J(α) is not convex.
ut

4.2 Perturbation Theory of Parameterized Matrix Game

In this subsection, we determine the first-order and second-order derivatives of the game
value with respect to entries of the payoff matrix. We first introduce the concept of
completely mixed games.

Definition 1. A matrix game M is said to be completely mixed if, for every saddle-point
solution ( f ,g), no element of f or g is zero. If M is completely mixed, then N1 = N2 and
the saddle-point solution of M is unique.

Let M̂(t) := L(M (t);α) denote the estimation of the game at time t. We make the
following assumptions on the parameter space and estimated game.

Assumption 1 The parameter space X is a subset of Euclidean space RS where for all
α ∈X , c(α)≤ ‖α‖ ≤C(α).

Assumption 1 restricts the parameter to a compact space. It prevents the output estimation
from approaching infinity or 0.

Assumption 2 M̂(t) is completely mixed for all t.

Assumption 2 implies that the estimated game matrix is square and nonsingular. It
enables the computation of first-order and second-order derivatives of the objective
functions.

For games that are not completely mixed, their computations remain an open problem.
Lloyd Shapley [6] has observed that the nonexistence of any derivatives as a function of
a given matrix element correspond to degeneracies in the linear-programming solution
of the game. Assumption 2 coincides with the facts in [5] that the set of N1×N2 matrices
which have unique saddle-point points is open and everywhere dense in N1×N2-space;
i.e., solutions are unique for most of the N1×N2 matrices. With assumption 2, we avoid
equilibrium selection by degenerating saddle-point solution sets into singletons and
ensure the uniqueness of f (t)(α) and g(t)(α). The explicit expression of saddle-point
solutions are feasible under assumption 2, as shown in lemma 3 following [21].
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Lemma 3. Assume that 1T[M̂(t)]−11 is nonzero. For every t and given α , under Assump-
tion 2 and we have:

(i) v(t)(α) = 1/1T[M̂(t)]−11− z(t).
(ii) f (t)T(α) = 1T[M̂(t)]−1val(M̂(t)).

(iii) g(t)(α) = [M̂(t)]−11val(M̂(t)).

Here, vector 1 is a vector of appropriate dimension with all entries being 1. The assump-
tion of 1T[M̂(t)]−11 being nonzero is without loss of generality. Lemma 3 enables the
following direct computation of the gradient of the error (11).

Theorem 1. For every t, under Assumption 2, the gradient vector of the error (11) is
given by

∇v(t)(α) = (δ
(t)
1 (α), . . . ,δ

(t)
S (α))T, (13)

where δi(α) = f (t)T(α)M(t)
i g(t)(α), i ∈ S . Furthermore, ‖∇v(t)(α)‖ is bounded by

some positive constant.

Proof. Given that M̂(t) is completely mixed, the results in Lemma 3 hold. According to
the product rule of derivatives, we have ∀i ∈S :

∂v(t)(α)

∂αi
= f (t)T(α)M(t)

i g(t)(α)+
∂ f (t)T(α)

∂αi
M̂(t)g(t)(α)+ f (t)T(α)M̂(t) ∂g(t)(α)

∂α

= f (t)T(α)M(t)
i g(t)(α)+

∂ f (t)T(α)

∂αi
M̂(t)[M̂(t)]−11v(t)(α)

+ v(t)(α)1T[M̂(t)]−1M̂(t) ∂g(t)(α)

∂αi

= f (t)T(α)M(t)
i g(t)(α)+ v(t)(α)

(
∂ f (t)T(α)1

∂αi
+

∂1Tg(t)(α)

∂αi

)
= f (t)T(α)M(t)

i g(t)(α).

Stacking all the partial derivatives of i’s gives the gradient. For any α ∈X that satisfies
Assumption 2, we have

‖∇v(t)(α)‖ ≤ ‖
(

max
i∈A1, j∈A2

|(M(t)
1 )i j|, . . . , max

i∈A1, j∈A2
|(M(t)

S )i j|
)T‖

‖∇v(t)(α)‖ ≤ ‖
(

min
i∈A1, j∈A2

|(M(t)
1 )i j|, . . . , min

i∈A1, j∈A2
|(M(t)

S )i j|
)T‖.

Thus, for bounded expert matrices, ‖∇v(t)(α)‖ is bounded too, which can be viewed as
a corollary of Lemma 1. ut

Corollary 1. Under Assumption 2, the gradient of J(t)(α) is given by

∇J(t)(α) =
2
t

t ′

∑
t ′=1

(
(δ

(t)
1 (α), . . . ,δ

(t ′)
S (α)

)Tv(t
′)(α). (14)
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Remark 1. The entry δ
(t)
i (α) indicates the sensitivity or the change in the accumulated

square error with respect to a perturbation of αi. It can be interpreted as the partial
contribution by expert i to the reduction of the error. Note that f (t)T(α)M(t)

i g(t)(α) is the
expected outcome of the expert game i, M(t)

i , achieved with the saddle-point strategies
of M̂(t).

We are also interested in the sensitivity of ∇J(t)(α) with respect to the changes in
variable α .

Theorem 2. For every t, under Assumption 1 and 2, v(t)(α) is twice continuously

differentiable, and so is J(t)(α). The Hessian of v(t)(α) :=

[
∂ 2v(t)(α)

∂αi∂α j

]
i, j∈S

is given by

∂ 2v(t)(α)

∂αi∂α j
= φ

(t)
i j M(t)

i g(t)(α)+ f (t)T(α)M(t)
i ϕ

(t)
i j , i, j ∈S , (15)

where

φ
(t)
i j =

(
1T f (t)T(α)M(t)

j g(t)(α)− f (t)T(α)M(t)
i

)
[M̂(t)]−1

ϕ
(t)
i j = [M̂(t)]−1

(
f (t)T(α)M(t)

j g(t)(α)1−M(t)
i g(t)(α)

)
.

Furthermore, the Hessian ∇2J(t)(α) is bounded; i.e., there exists a positive constant,
such that ‖∇2J(t)(α)‖ ≤ 1

2 β , where ‖∇2J(t)(α)‖ is the maximum (real) eigenvalue.

Proof. Under Assumption 2, the derivative of (13) exists, for i, j ∈S :

∂ 2v(t)(α)

∂αi∂α j
=

∂ f (t)(α)

∂α j
M(t)

i g(t)(α)+ f (t)T(α)M(t)
i

∂g(t)(α)

∂α j

From Lemma 3, we have

f (t)T(α)M̂(t) = 1Tval(M̂(t))

M̂(t)g(t)(α) = val(M̂(t))1.

Take derivative w.r.t α j on both sides and we arrive at the derivative of the saddle-point
strategies:

φ
(t)
i j =

∂ f (t)(α)

∂α j
=
(

1T f (t)T(α)M(t)
j g(t)(α)− f (t)T(α)M(t)

i

)
[M̂(t)]−1

ϕ
(t)
i j =

∂g(t)(α)

∂α j
= [M̂(t)]−1

(
f (t)T(α)M(t)

j g(t)(α)1−M(t)
i g(t)(α)

)
The Hessian ∇2J(t)(α) can be constructed using the first and second-order derivatives of
v(t)(α). Its entry takes the following form:

[∇2J(t)(α)]i j =
t

∑
t ′=1

∂v(t
′)(α)

∂αi

∂v(t
′)(α)

∂α j
+

∂ 2v(t
′)(α)

∂αi∂α j
v(t
′)(α).
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Using triangular inequality, we obtain

‖[∇2J(t)(α)]i j‖ ≤
t

∑
t ′=1
‖∂v(t

′)(α)

∂αi

∂v(t
′)(α)

∂α j
+

∂ 2v(t
′)(α)

∂αi∂α j
v(t
′)(α)‖

≤
t

∑
t ′=1
‖∂v(t

′)(α)

∂αi

∂v(t
′)(α)

∂α j
‖︸ ︷︷ ︸

first term

+‖∂ 2v(t
′)(α)

∂αi∂α j
v(t
′)(α)‖︸ ︷︷ ︸

second term

.

The boundedness of Hessian entry is determined by the first term and the second term.
We have for any t ′ ∈ {1, . . . , t}, the first term is bounded according to Theorem 1:

‖∂v(t
′)(α)

∂αi

∂v(t
′)(α)

∂α j
‖ ≤ ‖max

a,b
[M(t ′)

i ]ab‖ · ‖max
a,b

[M(t ′)
j ]ab‖.

For the second term,

‖∂ 2v(t
′)(α)

∂αi∂α j
v(t
′)(α)‖ ≤ ‖v(t ′)(α)φ

(t ′)
i j M(t ′)

i g(t
′)(α)‖+‖ f (t

′)T(α)M(t ′)
i ϕ

(t ′)
i j v(t

′)(α)‖

≤ (Q+P)‖val(M̂)− z̄(t
′)‖‖[M̂(t ′)]−1‖

≤ (Q+P)(‖val(M̂)‖‖[M̂(t ′)]−1‖+‖z̄(t ′)‖‖[M̂(t ′)]−1‖),

where Q and P are positive constants such that

‖1T f (t)T(α)M(t)
j g(t)(α)− f (t)T(α)M(t)

i ‖ · ‖M
(t)
i g(t)(α)‖ ≤ Q

‖ f (t)T(α)M(t)
j g(t)(α)1−M(t)

i g(t)(α)‖ · ‖ f (t)T(α)M(t)
i ‖ ≤ P.

The parameterized ‖[M̂(t ′)]‖−1 is bounded since α is lower bounded by positive con-
stant according to assumption 1. Since the eigenvalue of a square matrix is bounded
by its maximum entry multiplied by its order, ‖[M̂(t)]−1‖‖val(M̂(t))‖ is also bounded,
according to Lemma 3:

‖[M̂(t)]−1‖‖val(M̂(t))‖= ‖[M̂(t)]−1‖/‖1T[M̂(t)]−11‖

≤
N1 maxi, j

(
[M̂(t ′)]−1

)
i j

∑i, j
(
[M̂(t ′)]−1

)
i j

Similarly, boundedness of Hessian entries implies that its eigenvalues are bounded by
some constant, and thus we arrive at a bound β . ut

In the following, we provide a lemma that establishes the relation between bounded
Hessian and Lipschitz continuity, and then give the main theorem that ensures the
convergence of gradient-based algorithms.

Lemma 4. Let f : RS→R be a twice continuously differentiable function. If there exists
a positive constant β such that ‖∇2 f‖ ≤ β , where ‖∇2 f‖ is the matrix norm, then

∀α, α̃ ∈ RS : ‖∇ f (α)−∇ f (α̃)‖ ≤ β‖α− α̃‖.
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Proof. The result can be proved by using a second-order Taylor expansion around α and
α̃ , i.e.,

f (α)− f (α̃) = ∇ f (α̃)T(α− α̃)+
1
2
(α̃−α)T

∇
2 f (ξ1)(α̃−α)

=−∇ f (α)T(α̃−α)− 1
2
(α− α̃)T

∇
2 f (ξ2)(α− α̃),

where ξ1 = α + t1(α̃−α) and ξ2 = α̃ + t2(α− α̃) and t1, t2 ∈ (0,1). We combine the
two relations and obtain

‖∇ f (α)−∇ f (α̃)‖ ≤ 1
2
‖∇2 f (ξ2)‖‖α̃−α‖+ 1

2
‖∇2 f (ξ2)‖‖α− α̃‖

≤ β‖α̃−α‖.

ut
Theorem 3. For every t, under Assumption 2, the vector functions |v(t)(α)|2 are Lips-
chitz continuous; i.e., there exists a Lipschitz constant β > 0, such that for all α, α̃ ∈X
that satisfies

‖∇v(t
′)(α)v(t

′)(α)−∇v(t
′)(α̃)v(t

′)(α̃)‖ ≤ β‖α− α̃‖; (16)

and
‖∇J(t)(α)−∇J(t)(α̃)‖ ≤ 2β‖α− α̃‖. (17)

Furthermore, the following holds:

J(t)(α)− J(t)(α̃)≤ (∇J(t)(α̃))T(α− α̃)+β‖α− α̃‖2. (18)

Proof. Inequality (16) immediately follows Lemma 4 and the analysis in Theorem 2. To
obtain (17), we add up (16) for all t ′ and use the triangular inequality.

‖∇J(t)(α)−∇J(t)(α̃)‖ ≤ 2
t

∑
t ′=1
‖∇v(t

′)(α)v(t
′)(α)−∇v(t

′)(α̃)v(t
′)(α̃)‖

≤ 2β‖α− α̃‖.

Inequality (18) is a basic result following (17):

J(t)(α)− J(t)(α̃) =
∫ 1

0
(α− α̃)T

∇J(t)(α̃ +ξ (α− α̃))dξ

≤
∫ 1

0
(α− α̃)T

∇J(t)(α̃)dξ

+
∫ 1

0
‖α− α̃‖‖∇J(t)(α̃ +ξ (α− α̃))−∇J(t)(α̃)‖dξ

≤ (∇J(t)(α̃))T(α− α̃)+β‖α− α̃‖2.

ut
The gradient and the Hessian of the errors, together with the property of Lipschitz
continuity, provides a theoretical foundation for developing gradient-based algorithms,
which will be discussed in Section 5.
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5 Algorithmic Analysis

In this section, we develop gradient-based algorithms to find the linear optimal esti-
mator, and study their convergence properties. We first formally present the optimality
conditions that characterize the solutions to the dynamic problem 8.

Proposition 1 (Stationary Points) For every t, due to non-convexity, we are satisfied at
finding a solution α∗(t) for J(t)(α) in DP-t that satisfies the first-order conditions,

∇J(t)(α∗) = 0

which we refer to as stationary points.

A descent algorithm starts from initial point α0, proceeding iteratively as follows:

α
k+1 = α

k + γ
ksk, k = 0,1,2, . . . ,

where γk ∈ R+ is the stepsize and sk ∈ RS represents the descent direction. Many
choices are plausible for the descent direction, resulting in different algorithmic im-
plementations; e.g., steepest gradient (i.e., sk = −∇J(t)(αk)), Newton’s method (i.e.,
sk =−(∇2J(t)(αk))−1∇J(t)(αk)), and other variants (e.g., quasi-Newton methods). Al-
gorithm 1 gives a steepest gradient descent algorithm, which is well known to achieve a
linear convergence rate. The tolerance ε denotes the stopping criteria.

Algorithm 1: Optimal Linear Estimation Using Steepest Gradient

Data: {M (t ′)}t
t ′=1, {z(t ′)}t

t ′=1;
Input : α0, {γk}, ε;
for k← 1,2, . . . do

foreach i← 1 to t do
( f (i),g(i))← saddle-point(L(M (i),α)− z(i)E)

end
∇J(t)(αk)← 1

t ∑
t
i=1

(
∇v(i)(α)

)
v(i)(α);

if ‖∇J(t)(αk)‖ ≤ ε ;
then

Break
end
αk+1← αk− γk∇J(t)(αk);

end
Result: α∗

Pseudo-Gradient Approximation As saddle-point strategies are computationally costly
to obtain, determining a steepest direction is relatively inefficient. In fact, the descent
direction can be approximated once the approximation error is sufficiently small. We
hereby provide a pseudo gradient method that uses a surrogate descent direction s̄k,
where for all i ∈S

s̄k
i =

t

∑
t ′=1

1
N1N2

∑
i, j
(M(t ′)

i )i j

(
1

N1N2
∑
i, j
(M̂(t ′))i j− z̄(t

′)

)
. (19)
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In short, the pseudo-gradient approximates the gradient by replacing δ
(t ′)
i with the mean

value of M(t ′)
i and replacing val(M̂(t ′)) with average entry value of M̂(t ′). By doing so,

we eliminate the problem for computing the saddle-point strategies and game values,
significantly reducing the computational complexity.

5.1 Sequential Observation and Adaptation

When t becomes large, steepest gradient methods are inefficient as it needs to sweep
through the entire dataset. It is more attractive to use an incremental method that can
sequentially update the gradient. The incremental gradient method is described as follows:

α
k+1 = α

k− γ
k

(
t

∑
i=1

∇v(i)(ψ i−1)v(i)(ψ i−1)

)
, (20)

where at iteration k:

ψ
i = ψ

i−1− γ
k
∇v(i)(ψ i−1)v(i)(ψ i−1) i = 1, . . . , t.

The stepsize selection is essential to ensure the convergence of the iterations. Usually
when γk does not diminish to 0, there will be an oscillation within ψ i.

Assumption 3 The following conditions are satisfied:

(a) The product of every error (11) and its gradient is bounded for all α ∈X and every
t ′, t; i.e.,

‖∇v(t
′)(α)v(t

′)(α)‖ ≤ c1 + c2‖∇J(t)(α)‖ (21)

for positive constants c1 and c2;
(b) Diminishing stepsize, i.e., ∑

∞
k=0 γk = ∞ and ∑

∞
k=0(γ

k)2 < ∞.

Corollary 2. Under Assumption 3, for all α ∈X , we have

(1−2c2)‖∇J(t)(α)‖ ≤ 2c1. (22)

Particularly, when 0 < c2 <
1
2 , ‖∇J(t)(α)‖ is bounded by

2c1

1−2c2
.

This bound can be obtained through triangular inequality:

‖∇J(t)(α)‖= 2
t
‖

t

∑
t ′=1

∇v(t
′)(α)v(t

′)(α)‖

≤ 2
t

t

∑
t ′=1
‖∇v(t

′)(α)v(t
′)(α)‖

≤ 2c1 +2c2‖∇J(t)(α)‖

Proposition 2 Under Assumption 3, the incremental gradient method 20 applied to 8
generates a sequence {αk}. J(t)(αk) converges to a finite value and limk→∞ ∇J(t)(αk) =
0. Every limit point of αk is a stationary point of problem 8.
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Proof. We provide a sketch of the proof here. At iteration k, we have

ψ
1 = α

k− γ
k
∇v(1)(αk)v(1)(αk)

ψ
2 = α

k− γ
k
∇v(2)(ψ1)v(2)(ψ1)

...
...

ψ
t = α

k− γ
k
∇v(t)(ψ t−1)v(t)(ψ t−1)

Adding them up, we obtain

α
k+1 = α

k− γ
k(

∇J(t)(αk)−
t

∑
t ′=2

(∇v(t
′)(αk)v(t

′)(αk)−∇v(t
′)(ψ t ′−1)v(t

′)(ψ t ′−1))
)

= α
k− γ

k(
∇J(t)(αk)−wk)

Using Theorem 3, we see that the error term wk =∑
t
t ′=2 ∇v(t

′)v(t
′)(αk)−∇v(t

′)v(t
′)(ψ t ′−1)=

∑
t
t ′=2 wk

t ′ is bounded, for every t ′:

wk
t ′ ≤

t−1

∑
i=2
‖∇v(t

′)v(t
′)(ψ i)−∇v(t

′)v(t
′)(ψ i−1)‖

+‖∇v(t
′)v(t

′)(αk)−∇v(t
′)v(t

′)(ψ1)‖

≤ β
(
‖αk−ψ

1‖+
t−1

∑
i=2
‖ψ i−ψ

i−1‖
)

= βγ
k(‖∇v(t

′)v(t
′)(αk)‖+

t−2

∑
i=1
‖∇v(t

′)v(t
′)(ψ i)‖).

According to Assumption 3 (21),

wk
t ′ ≤ βγ

k((t−1)(c1 + c2‖∇J(t
′)(αk))‖+

t−2

∑
i=1
‖∇J(t

′)(αk)−∇J(t
′)(ψ i)‖)

Leveraging Corollary 2, we recursively eliminate ∇J(t
′)(ψ i) and see that the error term

wt is bounded; i.e., there exist positive constants C1 and C2 such that

wk ≤ γ
k(C1 +C2‖∇J(t)(αk)‖) (23)

Here, we omit the algebraic calculation of constants C1 and C2. Note that the elimination
procedures are similar. Using (18), we obtain

J(t)(αk+1)− J(t)(αk)≤ γ
k(−‖∇J(t)(αk)‖2 +‖∇J(t)(αk)‖‖wk‖)

+ γ
2
β‖∇J(t)(α)+wk‖2

≤ γ
k(−1+ γ

k(C2 +2β )+2(γk)3C2
2β )‖∇J(t)(α)‖2

+(γk)2(C1 +4γ
2C1C2β )‖∇J(t)(α)‖+2(γk)4C2

1β
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As Assumption 3 states that (γk)2 diminishes to 0, the terms multiplying γk with order 2
or higher will go to 0. For k sufficiently large, γk → 0, for some positive constants c′1
and c′2,

J(t)(αk+1)− J(t)(αk)≤−γ
kc′1‖∇J(t)(α)‖2 +(γk)2c′2‖∇J(t)(α)‖+2(γk)4C2

1β .

Observe that if ‖∇J(t)(α)‖ ≥ 1, then ‖∇J(t)(α)‖< ‖∇J(t)(α)‖2, or else ‖∇J(t)(α)‖2 ≤
‖∇J(t)(α)‖ ≤ 1, and thus ‖∇J(t)(α)‖ ≤ 1+‖∇J(t)(α)‖2. Then,

J(t)(αk+1)− J(t)(αk)≤−γ
k(c′1− γ

kc′2)‖∇J(t)(α)‖2 +o((γk)2). (24)

For k sufficiently large, c′1− γkc′2 ≤ 0, so that J(t)(αk+1)≤ J(t)(αk) and J(t)(αk+1)≥ 0.
(24) satisfies the deterministic form of supermartingale theorem. Hence J(α) converges
to some finite value and it must have ∑

∞
k=0 γk‖∇J(t)(αk)‖2 ≤ ∞. Since we assume

∑
∞
k=0 γk = ∞, it also has to satisfy liminfk→∞ ‖∇J(t)(αk)‖= 0. Due to Lipschitz continu-

ity, limsupk→∞ ∇J(t)(αk) is also 0 (the proof is omitted here), and hence the limit points
are stationary points. ut

Stochastic Gradient Descent (SGD) The surrogate estimated gradient is:

α
k+1 = α

k− γ
k
∇Ĵ(t)(αk) (25)

= α
k− γ

k 1
|B| ∑b∈B

∇v(b)(αk)v(b)(αk), (26)

where the indices b is chosen from batch set B. SGD is a stochastic version of incremental
method, exhibiting a lower computational cost in one single iteration with less gradient
memory storage. SGD guarantees weak convergence in non-convex systems under
Lipschitz-smoothness, pseudo-gradient property, and bounded variance of the descent
direction [4]. In our problem where there may exist multiple minimum, SGD potentially
admits global optimum.

5.2 Extended Kalman Filter

We consider a commonly used iterative method for nonlinear least-square estimation,
Gauss-Newton method, which is given as follows:

α
k+1 = α

k− γ
k(JvJT

v +λ I)−1Jvv(αk), (27)

where Jv =
(
∇v(1)(αk), . . . ,∇v(t)(αk)

)
is the Jacobian of the vector v(αk) =

(
v(1)(αk),

. . . ,v(t)(αk)
)T and λ I stands for a possitive multiple of the identity matrix as proposed in

Levenberg-Marquardt method [17] to ensure nonsingularity caused by the rank deficiency
of Jv.

Gauss-Newton iteration (27) is obtained by approximating Hessian with (JvJT
v +∆t)

as result of solving quadratic subproblems iteratively using linearized objective function
around every αk. This approximation avoids computing the individual residue Hessian
∇2v(t

′)(α), t ′ = 1, . . . , t, in Theorem 2.
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Extended Kalman Filter (EKF) [4,3,16] is an incremental version of the Gauss-
Newton method. Starting with some point α0, a single cycle of the method updates
the α via iterations that aims to minimize the partial sums ∑

j
t ′=1 |v

(t ′)(α)|2 j = 1, . . . , t
successively. Thus, it sequentially generates the vectors:

ψ
t ′ = argmin

α

t ′

∑
i=1

∣∣v(i)(ψ i−1)+
(
∇v(i)(ψ i−1)

)T
(α−ψ

i−1)
∣∣2 t ′ = 1, . . . , t

We consider the algorithm where ψ t ′ are obtained through increments:

ψ
i = ψ

i−1− (H i)−1
∇v(i)(ψ i−1)v(i)(ψ i−1), i = 1, . . . , t, (28)

with ψ0 = αk at step k, where matrices H i are generated by:

H i = λH i−1 +∇v(i)
(
ψ

i−1)
∇v(i)

(
ψ

i−1)T
, i = 1, . . . , t, (29)

with λ being a positive constant and H0 = λ I at iteration k = 0. The algorithm uses ψ t

at the end of an iteration to update αk:

α
k+1 = α

k− (Ht(k+1))−1( t

∑
i=1

∇v(i)(ψkt+i−1)v(i)(ψkt+i−1)
)
, (30)

where

Ht(k+1) = λ I +
k

∑
j=0

t

∑
i=1

∇v(i)
(

ψ
kt+i−1

)
∇v(i)

(
ψ

kt+i−1
)T

. (31)

Proposition 3 (Extended Kalman Filter (EKF) [3]) Assuming that there is a constant
c > 0 such that scalar λk used in the EKF algorithm at iteration k satisfies:

0≤ 1−λ
t
k ≤

c
k
, k = 1,2, . . . .

Then, the EKF algorithm generates a bounded sequence of vectors ψ i. Each of the limit
points of {αk} is a stationary point of the least-square problem 8.

Proof. One can follow the argument in Proposition 2 of [3] to show the convergence of
EKF, when a series of conditions are satisfied, among which the Lipschitz condition has
been verified.

Remark 2. λ represents the discount factor that discounts the effects of old information.
An interpretation of this algorithm is that, as the defender proceeds to estimate, the
previous experience tends to be gradually out-of-date, while newly encountered ones
should be highly valued in the estimation.

6 Case Study

In this section, we study a network configuration game to corroborate the results and
investigate the numerical properties of the algorithms. Consider a game with an attacker
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(a) Network configuration (b) Game estimation

Fig. 1. Illustration of adversarial interaction and estimation process.

and a defender in a network of server group. The defender chooses a subset of servers to
monitor and protect, while the attacker selects a subset of them to attack. The interactions
induce some value for both players.

Assuming that each player has four strategies and the defender does not know the
game, we can use a N1×N2 matrix game with random entries to capture this scenario.
The defender sequentially estimates the game based on past experiences (i.e., expert
games) and value observation. This situation is illustrated in Fig. 1.

6.1 Experimental Setting and Results

Here, we conduct the experiment by fixing configuration parameters shown in Table 1.
We generate the matrices M(t ′) and values of z̄(t

′) from i.i.d. distributions N (µ14,σ
2I4×4)

and N (µz,σ
2
z ), with a fixed random seed. As a result, the differences between values of

expert games and target games scale well. We compare the performances of different
methods for both SP and DP-t, and show their convergences in Fig. 2.

Table 1. Configurations

Variables Values Variables Values
Data horizon t 30 M (t ′) entry distribution (µ , σ) (1,1)
Vector α Size S 5 z̄(t

′) value distribution (µz, σz) (1,1)
Stepsize γk 0.98k×0.01 Parameter α initialization 1S
Tolerance ε 1e-5 Batch size |B| 1
Game size 4×4 Fading factor λ for EKF 0.9

The well-known Lemke-Howson algorithm [13] is implemented to find the saddle-
point strategies and values of matrix games.

6.2 Discussions

From Fig. 2, one shall see Gauss-Newton method as well as EKF exhibit convergence
faster than others as they naturally tune the stepsize. Meanwhile, the pseudo-gradient
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(a) Single observation at t = 1

(b) Multiple observation at t = 30

Fig. 2. Estimation curve for both static (a) and dynamic (b) problems

method displays promising convergence behavior. It can be seen in (a) that the partial
contribution by expert 2 dominates the learning process, indicating greater similarity
between expert game M(1)

2 and M̂.
We notice that the output square matrix M̂ usually does not satisfy Assumption 2

as the estimated saddle-point mixed strategies have 0 elements in the iterative process.
However, despite this, the algorithms still converge, indicating that assumption 2 is a
conservative assumption for practice.

7 Conclusions and Future Research

This work has formulated and analyzed static and dynamic least-square game estimation
problems for a class of finite zero-sum security games. The formulation captures the
scenario where the players do not know the adversarial environments they interact
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with. We have studied the basic properties of least-square errors and developed iterative
algorithms to solve the game estimation problem. The proposed approach effectively
transfers the past experiences that are encoded as expert games to estimate the unknown
game and inform future game plays. We have seen that the algorithms work over
randomly generated datasets despite certain assumptions are not strictly satisfied.

There are many open research problems that could be addressed as future work. First,
it has been observed that the assumption for completely mixed game is conservative. The
future work would investigate the properties of the error functions when the assumption
does not hold. Second, it would be possible to extend this framework for stochastic
games. We would capture the dynamic adversarial environment using a stochastic game
representation, and estimate the environment using multi-time scale observations.
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