
A Game Theoretic Framework for Software
Diversity for Network Security

Ahmed H. Anwar1[0000−0001−8907−3043], Nandi O. Leslie1[], Charles
Kamhoua1[0000−0003−2169−5975], and Christopher

Kiekintveld2[0000−0003−0615−9584]

1 US Army Research Laboratory, MD 20783, USA
a.h.anwar@knights.ucf.edu,nandi.o.leslie.ctr@mail.mil,

charles.a.kamhoua.civ@mail.mil
2 University of Texas at El Paso, TX 79968, USA

cdkiekintveld@utep.edu

Abstract. Diversity plays a significant role in network security, and we
propose a formal model to investigate and optimize the advantages of
software diversity in network security. However, diversity is also costly,
and network administrators encounter a tradeoff between network secu-
rity and the cost to deploy and maintain a well-diversified network. We
study this tradeoff in a two-player nonzero-sum game-theoretic model of
software diversity. We find the Nash equilibrium of the game to give an
optimal security strategy for the defender, and implement an algorithm
for optimizing software diversity via embedding a graph-coloring appr-
oach based on the Nash equilibrium. We show that the opponent (i.e.,
adver- sary) spends more effort to compromise an optimally diversified
network. We also analyze the complexity of the proposed algorithm and
propose a complexity reduction approach to avoid exponential growth in
runtime. We present numerical results that validate the effectiveness of
the propo- sed software diversity approach.

Keywords: Software Diversity · Game Theory · Network Security.

1 Introduction

Diversity-based defenses to network security have recently emerged as a
recognized approach to resilience. In particular, these types of defenses introduce
uncertainty and probabilistic protection from attacks and provide a rich fram-
ework for diversifying program transformations [14,21,2]. In a few areas of security
(e.g., moving target defense [2]) there has been a wide application of software
diversity techniques. For example, methods have been proposed for giving the
software a dynamically shifting attack surface for both binary executables and
web applications [15]. However, there remain limitations with these defenses
depending on the threat. For example, address space layout randomization is
ineffective against buffer-overflow attacks, such as the de-randomization attack
[23]. Graph theory, and particularly attack graphs, provides a unique formal

2 A.H. Anwar et al.

approach to help quantify the efficiency and effectiveness of temporal and spatio-
temporal diversity mechanisms. Moreover, security games on graphs [3,1,4] pro-
vide mathematical approaches that can offer insights into questions such as what
is the tradeoff between network security and software diversity, and what must be
diversified and when [14]. To address these questions, we introduce mathematical
models that use game theory to examine the connection between the distribution
of differing software configurations on a network and the resulting risk to network
security against a motivated attacker.

Software diversity involves randomizing transformations that make program
implementations diverge between each networked device or between each exec-
ution. These proactive defense strategies can increase the attackers’ workload
[14,16]. There is an analogy to biological ecosystems, where the resiliency of
a population to disease or the invasion of a nonnative species depends heavily
on biodiversity. Likewise, network resiliency can be increased (especially against
novel threats) by using efficient strategies for increasing software diversity. Attack
graphs are an important tool that models the network’s topology and spatio-
temporal vulnerabilities used to validate various defense approaches. Attack
graphs can be generated in different ways to represent interactions between the
host’s vulnerabilities and its neighbors’ vulnerabilities. In addition to using the
attack graph for understanding how network topology and vulnerabilities impact
the effectiveness of diversity-based defenses, a security game on an attack graph
captures the connections between diversity, security, and reachability [21]. In this
paper, a security game is formulated and played on an attack graph to study
the effectiveness of diversity-based defenses. The developed game investigates
the tradeoff faced by the defender between diversity cost and security level. Our
main contributions in this paper are:

– We propose a general model suitable to study software diversity for the
security of networked systems. Our model captures the set of vulnerabilities
and the network topology through an attack graph.

– We formulate a novel game model to study the effect of diversity on network
security under attack as a two-player nonzero-sum game.

– We present a complete algorithm to solve the game model and obtain the
Nash equilibrium diversity strategy.

– We analyze the complexity of the proposed algorithm and introduce a compl-
exity reduction approach that is shown to yield an almost exact reward for
the defender in our numerical results.

– Finally, we present numerical results for the developed software diversity
approach that show the effectiveness of the obtained diversity strategy at
Nash equilibrium.

The rest of the paper is organized as follows. We discuss related work in
section 2. In section 3, we present the system model, define the game model, and
propose our algorithm for software diversity. Our numerical results is presented
in section 4. Finally, we conclude our work and discuss future work in section 5.

A Game Theoretic Framework for Software Diversity for Network Security 3

2 Related Work

The scope of the problem we consider belongs to three interacting active
research fields: network diversity, resilience, and game theory. Diversity has
been a design objective to secure networks against various types of attacks
including Zero-Day attacks [28]. It has been shown that the intuition behind
the ability of diversity to increase the resiliency of systems and networks is
effective [10]. Garcia et al. [10] show using a data-driven study that building
a system with diverse operating systems is a useful technique to enhance its
intrusion tolerance capabilities. Moreover, diversity-by-design has been used to
increase a communication network’s throughput [6,17]. For security, the authors
in [5] proposed an automated approach to diversify network services to enhance
the network’s resilience against unknown threats and attacks. In their approach,
they considered constraints associated with diversity. Software diversification
techniques are also used to enhance network security by reducing the attack
surface [27,26].

Graph coloring is a well-known problem in dynamic channel assignment to
reduce interference between adjacent nodes [24,4]. However, the applications go
beyond reducing network interference to include securing medical images [25,19].
Moreover, graph coloring has been used in several computer science applications
such as data mining, clustering, image capturing, image segmentation, networ-
king, etc. [11]. Game theory has been used directly to solve graph coloring prob-
lems; such research problems are named “coloring games”. A coloring game is a
two player non-cooperative game played on a finite graph using a set of colors
in which players take turns to color the vertices of the graph such that no two
adjacent vertices have the same color [13].

Game theory has been used extensively to study security problems and
understand the strategic behavior of adversarial users and attackers [22,1,12].
In [1], a game-theoretic framework is developed to investigate jamming attacks
on wireless networks and the defender mitigation strategy. Kiekintveld et al. [12]
proposed a scalable technique to calculate security resource allocation optimal
policy of practical problems like police patrolling schedule for subway and bus
stations. A first step to quantify and measure diversity as a security metric
appeared in [21] where a game model has been used to investigate the necessary
conditions for network defender to diversify and avoid monoculture systems.
However, diversity is understudied in the literature of security games. In this
paper, we introduce a generalized nonzero-sum game model between the network
defender and an attacker. Motivated by the aforementioned benefits of diversity,
the defender player selects the best diversity policy in response to the attacker’s
strategies. The game is played over an attack graph that captures the network
topology and the dependencies between the vulnerabilities in the network.

3 System Model

Consider a network of arbitrary size, |N |, where N is the set of nodes of
the network. The network topology is defined by its adjacency matrix. Let H,

4 A.H. Anwar et al.

denote the graph adjacency matrix, where any entry of the network [Hu,v] = 1
if node v is connected to node u, and is equal to 0 otherwise, for every u, v ∈ N .

We assume the network graph is represented using a directed graph denoted
by G(N ,H), where [Hu,v] = 1, denotes an edge between node u and node
v. This assumption fits a hierarchical network with a set of entry nodes that
allow users to access the network. Such networks resemble networks with a chain
of command. It also represents an interesting scenario where the depth of the
network can be captured. Adversaries are interested in reaching targets that are
practically installed in deeper layers of the network.

For each node v ∈ N , there is a certain software type that is running on the
node. A software type can abstract several properties, for example, it can model
the operating system, honeypot type, or specific application. For simplicity, we
assume the set of all used software types to be S, where each node is assigned
one software type s ∈ S. Let NSW denote node-software matrix of size |N |×|S|.
For instance, the NSW matrix shown in equation (1) represents a network of
3 nodes and a set S = {s1, s2}, where node 1 runs software type s1 and the
remaining two nodes run software type s2.

NSW =

1 0
0 1
0 1

 (1)

Each software type has one or more vulnerabilities. We let V be the set of
all vulnerabilities. Again we use matrix representation to define the software
to vulnerabilities relation. Let SWV be a |S| × |V| be a binary matrix, where
each row is a vector associated with each software type that indicates which
vulnerability is associated with that software. Specifically, any entry SWV [i, j] =
1 if and only if a software si ∈ S suffers vulnerability vj ∈ V, and SWV [i, j] = 0
otherwise.

Given NSW and SWV , the set of vulnerabilities that could be exploited
by the attacker can be defined for each node. However, to target a node that
node should satisfy two conditions. First, it should be reachable through a path.
Secondly, that node should be exploitable through at least one vulnerability.
Note that an attacker can reach any node if and only if there exists a path
between network’s entry node and that node subject that the attacker can also
compromise all the nodes that belong to this path.

Let Pv be a set of nodes connecting the network entry node and any node
v ∈ N . Specifically, Pv = {v0, ..., v}, where v0 is an entry node, and v denotes
any node in the network, however v usually denotes the node being targeted
by the attacker. Hence, the set of software implemented on each node affects
the ability of an adversary to reach v as he is required to exploit all nodes that
belong to the path Pv.

We define a two-player nonzero-sum game between the network administrator
as the defender and an adversary as the attacker. We consider the defender to
be player 1 and the attacker to be player 2. We start by discussing the attacker
problem and the possible attack strategies.

A Game Theoretic Framework for Software Diversity for Network Security 5

3.1 Attacker problem

The goal of the attacker is to compromise a subset of targeted nodes in the
network using an attack toolbox. We assume that the attacker has a set of probes
that allow him to compromise a set of vulnerabilities. More specifically, each
probe in the toolbox can exploit a subset of vulnerabilities. Let B denote the set
of all probes, i.e, the toolbox available to the attacker. The relation between each
probe in B and the kind of vulnerabilities it exploits is characterized through a
probe matrix.

The probe matrix denoted by P is a |B| × |V| binary matrix. Any entry
P[i, j] = 1 if the ith probe is capable of exploiting the jth vulnerability, for
every i ∈ B and j ∈ V, and P[i, j] = 0 otherwise. For instance, the matrix in
equation (2) represents two probes within the attacker action space and three
vulnerabilities. If the attacker attacks the network using the first probe, she
will only compromise the subset of reachable nodes with software that suffers
vulnerability V ul1. On the other hand, if the attacker attacked the network
using the second probe, she will be able to compromise all reachable nodes with
software type that suffers V ul2 and V ul3.

P =

[
1 0 0
0 1 1

]
(2)

The attacker increases his payoff by maximizing the number of compromised
nodes in the network. Therefore, the attacker chooses to use a collection of probes
instead of using a single probe when attacking the network. We can readily define
the attacker action space as the collection set of all elements in the probe set

B. Let the attacker action space be denoted by A2. Specifically, A2 = {0, 1}|B|.
Therefore, any attack action a2 ∈ A2 is a binary vector of length |B|, where
a2(i) = 1 when the ith probe is used in the attack, and a2(i) = 0 otherwise,
for i = 1, 2, ..., |B|. To avoid trivial game scenarios, we assume a cost associated
with each probe which can represent (for example) the increased likelihood of
detection. Let Ca(a2) be the cost for each probe. As we discuss in more detail
later, the attacker faces an interesting trade-off as he wants to attack the network
using a larger number of probes to compromise more nodes, while reducing his
attack cost to avoid expensive attacks. Next, we discuss the defender problem
before we fully characterize the players’ payoff functions in more detail.

3.2 Defender problem

We focus on a defender who uses diversity to enhance network security. The
defender action affects the node software matrix, NSW . Based on the available
number of software types and how they are assigned to nodes in the network,
the defender can increase the level of diversity in the network. The defender can
potentially use all the available software types to achieve the maximum level
of security through diversity. However, a highly diversified network is harder
to operate and maintain. Therefore, the defender incurs a cost associated with

6 A.H. Anwar et al.

the diversity size, |S|. Let Cd(a1) denote the cost associated with the defense
strategy, for any defender action a1 ∈ A1, where A1 is the defender action space.
The defender action space contains all the combinations of software types. The
defense strategy a1 selects a subset out of the software set, S. For instance, a
defense strategy a1 = {s1, s2, s3} means that the defender is implementing 3
different software types to run on different nodes in the network.

Allocating the selected software types over different nodes is similar to the
well-known graph coloring problem. Therefore, we adapt graph-coloring algor-
ithms to implement strategies that ensure that neighboring nodes do not run the
same software type whenever possible. Having a larger palette with more colors
will directly enhance the effectiveness of the graph coloring algorithm. This in
turn reduces the attacker reachability to a smaller set of nodes. In Algorithm 1,
we leverage the graph coloring algorithm proposed in [9] to implement such an
approach.

The defender trade-off is to minimize the size of the set of software types to
be diversified, to reduce nodes’ reachability while minimizing the cost associated
with such a defense strategy. In other words, the defender aims to secure the
maximum number of nodes using the minimum number of different software
types. However, the attacker attempts to compromise the maximum number of
nodes using the smallest number of probes. Next, we quantify the payoff functions
for both players.

3.3 Payoff functions

The goal of the defender is to secure the network through securing as many
nodes as possible using software diversity. Protecting nodes can be achieved
through the careful distribution of different software types to neighboring nodes.
The subset of secured nodes depends on their topological locations in the network
and the vulnerabilities associated with the software type assigned to each of them
as defined via the SWV matrix. Given the software vulnerability matrix, SWV ,
and node software matrix NSW , one can easily define a node vulnerability
matrix, NV , that defines the subset of vulnerabilities associated with each node
as follows,

NV = NSW × SWV. (3)

Recall that the graph is colored according to the action played by the defender,
a1, and hence NSW is defined. However, the attacker action, a2, defines the set
of exploitable vulnerabilities according to probe matrix P. The attacker goal is
to maximize the number of compromised nodes, which is denoted by K, and can
be expressed as follows:

K = mean

(∑
v∈N

(∑
u∈Pv

1{u∈E(a2)}

))
, (4)

where 1{.} is an indicator function, which is equal to one when {u ∈ E(a2)},
where E(a2) is the set nodes that can be exploited and compromised by the

A Game Theoretic Framework for Software Diversity for Network Security 7

attacker. The set of exploitable nodes E(a2) contains all nodes that are assigned
a software type that has any of the vulnerabilities that can be compromised using
the probes in a2. Let Va2 denote the set of vulnerabilities that the attacking
probe(s) can exploit given the attacker action, a2. Also, let NV (u) be the set of
vulnerabilities associated with the software type running on node u. Then, the
set of exploitable nodes can be defined as, E(a2) = {u ∈ N|NV (u) ∩ Va2 6= Φ}.
Therefore, K represents the average distances between exploitable nodes (i.e,
subgraphs diameter).

The defender encounters a diversity cost Cd(.) that depends on the number
of software types (colors) used to color the network graph. For simplicity, we
assume a fixed cost per color.

Therefore, the defender payoff function can be written as:

R1(a1, a2) = −K − Cd(a1), (5)

and the attacker payoff function is written as:

R2(a1, a2) = K − Ca(a2). (6)

The K term captures an interesting tradeoff for the defender. If the defender
has a large budget and does not care about the defense cost, using a very
large number of software types is still a double-edged sword. A higher number
of software types (i.e, colors) allows for a better graph coloring outcome and
hence limits the attacker’s ability to reach a bigger community. However, since
each software suffers a subset of vulnerability, this may increase the number of
exploitable nodes in the graph. Therefore, using all the available software types
to color the graph may not be in favor of the defender. It is worth noting that
we do not assume that any of the software types are risk-free, otherwise, the
problem is trivial and the defender better off using a complete monoculture of
that secured software.

On the attacker side, using the maximum number of available probes is always
in favor of the attacker if the cost per probe is zero. Thus, the game is designed to
investigate the trade-off between the reward of exploiting nodes using available
probes, and the cost associated with each subset of probes.

3.4 Game problem

We now formulate the game Γ (P,A,R), where:

– P = {Defender,Attacker} is the set of players.
– A = {A1 ×A2} is the game action space, which is the product of the action

space of the defender and the action space of the defender as defined in the
previous subsection.

– R = {R1, R2} denotes the game reward set.

As shown in equations (5) and (6), Γ is a nonzero-sum game with a finite
number of pure actions for every player. Nonzero-sum reflects the fact that the

8 A.H. Anwar et al.

attacker does not benefit from the cost paid by the defender, and vice versa.
Let A and B denote payoff matrices for the defender and attacker, respectively.
Both matrices are of size |A1| × |A2|. The defender maximizes over the rows of
A, and the attacker maximizes his reward over the columns of B. Moreover, let
x be a vector of |A1| × 1 and y be a vector of |A2| × 1. A mixed strategy, x,
is a probability distribution over the action space, |A1|. Similarly, the attacker
mixed strategy, y, is a probability distribution over the action space, |A2|.

Theorem 1. For the finite game Γ , there exists at least one point (x∗,y∗) of
mixed equilibrium.

Proof. The proof follows Nash’s theory in [20] directly. The theory states that for
every pair of payoff matrices A, B there is a nonzero number of mixed equilibria.

For any mixed strategy, y, played by the attacker, the defender maximizes
his expected reward by solving the following optimization problem to find his
best response strategy x∗,

maximize
x

xTAy

subject to

|A1|∑
i=1

x(ai1) = 1,

x ≥ 0.

(7)

On the other side, for any mixed strategy, x, played by the defender, the
attacker finds the optimal attacking strategy y∗ by solving the following optimi-
zation problem,

maximize
y

xTBy

subject to

|A2|∑
j=1

y(aj2) = 1,

y ≥ 0.

(8)

It has been shown by Chen et al. [8] that for the general n-person nonzero-sum
non-cooperative games, computing Nash equilibria is PPAD-complete. However,
for the two-player case of a nonzero-sum game with a finite number of pure
strategies as Γ , a necessary and sufficient condition for a point to be a point
of equilibrium is that it is a solution of a single programming problem of a
quadratic objective function and a set of linear constraints and the objective
function has a global maximum of zero as shown in [18]. Based on the work in
[18], MATLAB code has been developed in [7] that computes at least one point of
Nash equilibrium using sequential quadratic programming based quasi-Newton
technique which is used to solve the above optimization problems in (7) and (8).
We apply the procedure shown in Algorithm 1 to obtain a software diversity
strategy based on the formulated game.

A Game Theoretic Framework for Software Diversity for Network Security 9

Algorithm 1 Diversify

1: procedure Diversify(G,S,B, SWV, P,Cd, Ca) . Input parameters
2: System Initialization
3: Define: A1, A2

4: for a1 ∈ A1 do
5: Graph Color (G, a1) . Graph coloring algorithm
6: Update NSW . Build node-software matrix
7: Compute NV = NSW × SWV . node-vulnerability matrix
8: for a2 ∈ A2 do
9: Compute R1(a1, a2) → update A

10: Compute R2(a1, a2) → update B

11: GameSolver(A,B) → x∗,y∗ . Mixed strategies equilibrium for (7),(8)

3.5 Game complexity

The computational time for solving the game programs depends on the
dimensions of the action space A, or the number of pure actions for each player.
Unfortunately, the time grows exponentially in the number of strategies of both
players.

For our game model, the number of pure actions does not grow with the
number of nodes of the network. Instead, it grows with the number of software
types available to the defender, and with the number of probes used by the
attacker. However, this rate of growth is exponentially increasing with the num-
ber of software types (colors). For instance, if the number of available software
|S|, then the number of pure strategies for the defender, |A1| = 2|S|. Similarly,
if the number of available probes to the attacker is |B|, the number of pure
attacker’s pure actions is |A2| = 2|B|.

3.6 Complexity reduction:

Since the set of vulnerabilities associated with each software type is known
to the defender, the defender can prioritize the use of available software types
accordingly. More specifically, let w be weight vector of size |S|, such that,

w = SWV × e, (9)

where e, is a column vector of all ones of size |V| × 1. Hence, w represents the
weight of each software type s ∈ S, in terms of the number of vulnerabilities it
introduces into the network when used by the defender.

Therefore, the defender does not need to consider all the possible combinat-
ions of the available software types. Instead, the defender optimizes over the
number of software types (i.e, number of colors) to implement, and sorts the
software set according to their weights in ascending order. For instance, if the
defender decided to use three software types, she can immediately pick the three
colors with the smallest weights according to w as defined in (9).

10 A.H. Anwar et al.

This approach leads to a significant reduction in the complexity of the game
as the size of the action space |A1| will not grow exponentially with the number
of the available software types |S|, it will grow linearly, instead.

Moreover, in the case of a perfect information game, the defender is assumed
to know the probe matrix P as defined in equation (2). Therefore, the defender
may sort the attacker’s probes according to their potential damage. Along the
same lines as w, let d = P × e denote the damage vector of size |B| × 1, the
defender can sort the probes available to her opponent in descending order
according to damage vector d assuming a worst-case scenario in which the
attacker always uses the most powerful probe first. The attacker is now optimi-
zing the number of probes to use when launching an attack. With this reduction,
we can redefine the action space for both players as follows, Ā1 = {1, 2, ..., |S|}
and Ā2 = {1, 2, ..., |B|}.

Using these heuristics we can significantly enhance the runtime of Algorithm
1 and present a Fast-Diversify as shown in Algorithm 2.

Algorithm 2 Fast-Diversify

1: procedure Diversify(G,S,B, SWV, P,Cd, Ca) . Input parameters
2: System Initialization
3: Compute w, d
4: Sort w ”Ascend”
5: Sort d ”Descend”
6: Define: Ā1, Ā2

7: for a1 ∈ A1 do
8: Graph Color (G, a1) . Graph coloring algorithm
9: Update NSW . Build node-software matrix

10: Compute NV = NSW × SWV . node-vulnerability matrix
11: for a2 ∈ A2 do
12: Compute R1(a1, a2) → update A
13: Compute R2(a1, a2) → update B

14: GameSolver(A,B) → x∗,y∗ . Mixed strategies equilibrium for (7),(8)

In the following section, we present numerical results to validate the developed
algorithms.

4 Numerical Results

We now present numerical results that validate the proposed game model.
First, we consider a 20-node network that we generated such that any two nodes
are connected directly with an edge with probability 0.5, as illustrated in Fig.
1a. We investigate the behavior of the players based on the Nash equilibrium
strategies computed for the proposed game model with different values of the
game model parameters.

A Game Theoretic Framework for Software Diversity for Network Security 11

(a) A 20-node network topology. (b) A 30-node network topology

Fig. 1: The two generated network topologies with randomly generated edges.

For the network topology shown in Fig. 1a, we plot the attacker’s reward in
Fig. 2a for different numbers of software types. It is clear that as the number
of available software types increases, the defender can color the graph more
efficiently, and hence software diversity will significantly reduce the attacker
reward. However, increasing the number of available software types does not
imply that the reward of the defender increases steadily since the defender
plays his Nash equilibrium strategy. The Nash equilibrium strategy may lead
the defender not to use all the available colors, since the use of a larger set
of software types may introduce new vulnerabilities to the network. Therefore,
in Fig. 2a, the attacker reward when the defender unilaterally deviated from
his Nash strategy was higher than the attacker reward even when the defender
used only a single software type (i.e., mono-culture case). In Fig. 2b, the defender
reward is plotted at a different number of software types for the Nash equilibrium
defense strategy from both sides. The defender reward is non-decreasing as the
number of available software types increases.

To understand the effect of the cost parameter for both players, we plot the
defender and attacker rewards at different cost values when the game played on
a 30-node network, as shown in Fig. 1b.

As shown in Fig. 3a, the defender and the attacker rewards are plotted for
different cost values per each software used by the defender at Nash equilibrium.
The defender reward decreases as the cost increases since the defender tends to
exclude more software types to avoid the defender cost Cd. On the other side,
the attacker reward increases as the defender diversity capabilities are limited
by the increasing cost while the cost per probe is fixed at 1. For the considered
network, the vulnerability set contains 3 vulnerabilities, and the attacker has
four probe types. To illustrate the role of the cost per probe, we plotted the
reward of both players versus the cost per probe in Fig. 3b. At a low cost per
probe, the defender reward is stably low as the attacker can afford the cost to
use all his probes in the attack. As the cost per probe increases beyond 1, the
defender reward starts to increase. However, since the defender cost is fixed at

12 A.H. Anwar et al.

(a) Attacker reward.

0 2 4 6 8 10

Number of software types

-8

-7

-6

-5

-4

-3

-2

-1

0

D
e

fe
n

d
e

r
re

w
a

rd

(b) Defender reward.

Fig. 2: Players’ reward vs. the number of software types at Nash equilibrium.

0 0.1 0.2 0.3 0.4 0.5

Cost per software

-2

-1.5

-1

-0.5

0

0.5

R
e

w
a

rd

Defender

Attacker

(a) Varying the cost per each software
type, the cost per probe is 1

0.5 1 1.5 2

Cost per probe

-2

-1.5

-1

-0.5

0

0.5

1

1.5

R
e

w
a

rd

Defender

Attacker

(b) Varying the cost per probe, the cost
per software is 0.1.

Fig. 3: Comparing players’ reward versus their action cost values

A Game Theoretic Framework for Software Diversity for Network Security 13

a low value of 0.1, the attacker is being punished more and hence the attacker
cost starts to decrease significantly.

0 0.1 0.2 0.3 0.4 0.5

Cost per software, cost per probe

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

R
e

w
a

rd

Defender Algorithm 1

Defender Algorithm 2

Attacker Algorithm 1

Attacker Algorithm 2

(a) Players reward at different cost values.

4 5 6 7 8 9

Number of software types

0

50

100

150

200

250

300

R
u

n
 t

im
e

 (
s
e

c
)

Algorithm 2

Algorithm 1

(b) Comparing the runtime at different
numbers of software type.

Fig. 4: Comparison between the performance of the two proposed algorithms.

Finally, we compare the efficiency of the proposed algorithm versus the cost
per software and cost per probe in Fig. 4a. We made the cost per software equal
to the cost per probe for simplicity. As shown in Fig. 4a, the Fast-Diverisfy
algorithm yields the exact reward for the defender and very comparable to the
attacker as Algorithm 2 assumes a worst-case scenario for the attacker to reduce
complexity. Moreover, in Fig. 4b we compare the runtime of both algorithms to
show the significant reduction in complexity achieved via Algorithm 2.

5 Conclusion and Future work

We studied a software diversity approach for network security via a formulat-
ed game-theoretic model over an attack graph. In this context, we developed a
novel game model to study the interactions between network defender and an
adversary when software diversity is the main defensive strategy for the defender.
We adapted a graph-coloring algorithm for computing Nash equilibrium diversif-
ying strategy and developed a complexity reduction approach to obtain Nash
equilibrium more efficiently making the proposed diversifying algorithm applica-
ble in large-scale networks with a larger number of colors. Numerical results
comp- uted using our model show both the benefits of software diversity as well
as the detailed tradeoffs that are necessary for both attackers and defenders in
this scenario. We also validate the computational effectiveness of our algorithms
for practical applications. Our ongoing research is focused on extending the
formulated game model to account for cases of incomplete information. In this
case, the software vulnerability matrix and the probe matrix are unknown before-
hand by the defender.

14 A.H. Anwar et al.

Acknowledgment

Research was sponsored by the Army Research Laboratory and was accomp-
lished under Cooperative Agreement Number W911NF-19-2-0150. The views
and conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or implied,
of the Army Research Laboratory or the U.S. Government. The U.S. Government
is authorized to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation herein.

References

1. Anwar, A.H., Atia, G., Guirguis, M.: Game theoretic defense approach to wireless
networks against stealthy decoy attacks. In: 2016 54th Annual Allerton Conference
on Communication, Control, and Computing (Allerton). pp. 816–821. IEEE (2016)

2. Anwar, A.H., Atia, G., Guirguis, M.: It’s time to migrate! a game-theoretic
framework for protecting a multi-tenant cloud against collocation attacks. In: 2018
IEEE 11th International Conference on Cloud Computing (CLOUD). pp. 725–731.
IEEE (2018)

3. Anwar, A.H., Kelly, J., Atia, G., Guirguis, M.: Stealthy edge decoy attacks against
dynamic channel assignment in wireless networks. In: MILCOM 2015-2015 IEEE
Military Communications Conference. pp. 671–676. IEEE (2015)

4. Anwar, A.H., Kelly, J., Atia, G., Guirguis, M.: Pinball attacks against dynamic
channel assignment in wireless networks. Computer Communications 140, 23–37
(2019)

5. Borbor, D., Wang, L., Jajodia, S., Singhal, A.: Diversifying network services under
cost constraints for better resilience against unknown attacks. In: IFIP Annual
Conference on Data and Applications Security and Privacy. pp. 295–312. Springer
(2016)

6. Casini, E., De Gaudenzi, R., Herrero, O.D.R.: Contention resolution diversity
slotted aloha (crdsa): An enhanced random access schemefor satellite access packet
networks. IEEE Transactions on Wireless Communications 6(4), 1408–1419 (2007)

7. Chatterjee, B.: An optimization formulation to compute nash equilibrium in finite
games. In: 2009 Proceeding of International Conference on Methods and Models
in Computer Science (ICM2CS). pp. 1–5. IEEE (2009)

8. Chen, X., Deng, X.: Settling the complexity of two-player nash equilibrium. In: 2006
47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’06).
pp. 261–272. IEEE (2006)

9. Farzaneh, M.: Graph Coloring by Genetic Algorithm. https://www.mathworks.

com/matlabcentral/fileexchange/74118-graph-coloring-by-genetic-

algorithm (2020), [MATLAB Central File Exchange. Retrieved July 12,
2020.]

10. Garcia, M., Bessani, A., Gashi, I., Neves, N., Obelheiro, R.: Os diversity for
intrusion tolerance: Myth or reality? In: 2011 IEEE/IFIP 41st International
Conference on Dependable Systems & Networks (DSN). pp. 383–394. IEEE (2011)

11. Jensen, T.R., Toft, B.: Graph coloring problems, vol. 39. John Wiley & Sons (2011)
12. Kiekintveld, C., Jain, M., Tsai, J., Pita, J., Ordóñez, F., Tambe, M.:

Computing optimal randomized resource allocations for massive security games.
In: Proceedings of The 8th International Conference on Autonomous Agents and
Multiagent Systems-Volume 1. pp. 689–696 (2009)

https://www.mathworks.com/matlabcentral/fileexchange/74118-graph-coloring-by-genetic-algorithm
https://www.mathworks.com/matlabcentral/fileexchange/74118-graph-coloring-by-genetic-algorithm
https://www.mathworks.com/matlabcentral/fileexchange/74118-graph-coloring-by-genetic-algorithm

A Game Theoretic Framework for Software Diversity for Network Security 15

13. Kierstead, H.A.: Asymmetric graph coloring games. Journal of Graph Theory
48(3), 169–185 (2005)

14. Larsen, P., Homescu, A., Brunthaler, S., Franz, M.: Sok: Automated software
diversity. In: 2014 IEEE Symposium on Security and Privacy. pp. 276–291. IEEE
(2014)

15. Le Goues, C., Forrest, S., Weimer, W.: Current challenges in automatic software
repair. Software quality journal 21(3), 421–443 (2013)

16. Le Goues, C., Nguyen-Tuong, A., Chen, H., Davidson, J.W., Forrest, S., Hiser, J.D.,
Knight, J.C., Van Gundy, M.: Moving target defenses in the helix self-regenerative
architecture. In: Moving target defense II, pp. 117–149. Springer (2013)

17. Liva, G.: Graph-based analysis and optimization of contention resolution diversity
slotted aloha. IEEE Transactions on Communications 59(2), 477–487 (2010)

18. Mangasarian, O.L., Stone, H.: Two-person nonzero-sum games and quadratic
programming. Journal of Mathematical Analysis and applications 9(3), 348–355
(1964)

19. Moumen, A., Bouye, M., Sissaoui, H.: New secure partial encryption method
for medical images using graph coloring problem. Nonlinear Dynamics 82(3),
1475–1482 (2015)

20. Nash, J.F., et al.: Equilibrium points in n-person games. Proceedings of the national
academy of sciences 36(1), 48–49 (1950)

21. Neti, S., Somayaji, A., Locasto, M.E.: Software diversity: Security, entropy and
game theory. In: HotSec (2012)

22. Roy, S., Ellis, C., Shiva, S., Dasgupta, D., Shandilya, V., Wu, Q.: A survey of
game theory as applied to network security. In: 2010 43rd Hawaii International
Conference on System Sciences. pp. 1–10. IEEE (2010)

23. Shacham, H., Page, M., Pfaff, B., Goh, E.J., Modadugu, N., Boneh, D.: On the
effectiveness of address-space randomization. In: Proceedings of the 11th ACM
conference on Computer and communications security. pp. 298–307 (2004)

24. Sohn, S.: Graph coloring algorithms and applications to the channel assignment
problems. In: IT Convergence and Security 2012, pp. 363–370. Springer (2013)

25. Thiyagarajan, P., Aghila, G.: Reversible dynamic secure steganography for medical
image using graph coloring. Health Policy and Technology 2(3), 151–161 (2013)

26. Wang, S., Wang, P., Wu, D.: Composite software diversification. In: 2017 IEEE
International Conference on Software Maintenance and Evolution (ICSME). pp.
284–294. IEEE (2017)

27. Wartell, R., Mohan, V., Hamlen, K.W., Lin, Z.: Binary stirring: Self-randomizing
instruction addresses of legacy x86 binary code. In: Proceedings of the 2012 ACM
conference on Computer and communications security. pp. 157–168 (2012)

28. Zhang, M., Wang, L., Jajodia, S., Singhal, A., Albanese, M.: Network diversity: a
security metric for evaluating the resilience of networks against zero-day attacks.
IEEE Transactions on Information Forensics and Security 11(5), 1071–1086 (2016)

	A Game Theoretic Framework for Software Diversity for Network Security

