
The Credential is Not Enough:
Deception With Honeypots and Fake Credentials

1Sonia Cromp[0009−0002−6556−3317], 2Mark Bilinski[0000−0003−3635−2027],
2Ryan Gabrys[0000−0002−9197−3371], and 1Frederic Sala[0000−0003−0379−2827]

1 University of Wisconsin-Madison, Madison WI 53706, USA
2 Naval Information Warfare Center Pacific, San Diego, CA, USA

cromp@wisc.edu, mark.bilinski.civ@us.navy.mil,
ryan.c.gabrys.civ@us.navy.mil, fredsala@cs.wisc.edu

Abstract. Honeypots are a classic cyber-deceptive technique that al-
lows a defender to add false information into the system in an effort
to deter/delay/distract potential attackers. However, the effectiveness of
honeypots is dependent on their design along with the environment into
which they are deployed. In this work, we consider the scenario where
there is a collection of honeypots along with a set of fake credentials. In
the first part of the paper, we uncover fundamental bounds that relate to
how long these deceptive elements remain effective. In the second part
of the paper, we take our results one step further and analyze a two-
person game where the attacker attempts to access desired resources
within a system according to a preference model and the defender at-
tempts to design honeypots that slow attacker progress. While prior work
has demonstrated the defender’s ability to learn attacker preferences by
observing the attacker’s actions, we enrich both parties’ action spaces
by allowing the attacker to query whether a server is real or honeypot
and by allowing the defender to choose between honeypots that better
reveal attacker behavior, or honeypots that exploit current knowledge of
attacker behavior. In this setting, we provide and analyze optimal strate-
gies for the attacker, along with a learning bound for and simulation of
defender strategies.

Keywords: Adversarial game · Cyber-deception · Active learning

1 Introduction

Cybersecurity is an area of great importance for any organization, whether in
industry, government, military, or other settings [4, 13]. Despite increased focus,
systems meant to provide security face two challenges. First, many techniques
offer a plausible approach to defense, but lack provable security guarantees, or
offer them in highly narrow settings. Second, the space is dynamic, with frequent
appearances of new cyberattacks and defenses, as well as combinations of extant
techniques. These obstacles must be overcome for organizations to have confi-
dence in their cybersecurity. As a result, we are interested in studying settings
that have rich attack models and defense strategies with provable guarantees.

2 S. Cromp et al.

Among the most important such settings involve the use of deception for
providing means of defense [1]. For defenders, such deception can be expressed
through honeypots—false information or devices that are added within an ecosys-
tem to slow down or block attackers [6, 3]. Honeypot-based systems naturally
admit a game-theoretical formulation [12], but there is a wide variety of such
settings. Many of the most realistic settings have not yet been addressed.

We focus on cyberattack settings where the attacker’s interests can be de-
scribed via a preference model, as in [6, 7]. In contrast to earlier work, the
attacker may choose between two attack vectors. In one approach, the attacker
attempts to use accessible credentials to gain access to a system, allowing the at-
tacker to access resources within the system of the most interest to the attacker.
In the other, the attacker performs random attacks, which may be faster than
relying on credentials but is less targeted towards the specific resources which
the attacker would like to access. To prevent these attacks, the defender has the
ability to use deception—setting up honeypot systems and creating false sets of
credentials in order to slow down or prevent the attacker from breaking in. This
work studies the fundamentals of such multiple-attack scenarios.

2 Related Work

A rich line of literature has studied deception in the context of cybersecurity.
In such work, a typical scenario involves a two-player game between an attacker
and a defender. The goal of the attacker is to access some system resources.
The defender can prevent this from happening (or slow it down) by present-
ing honeypots—fake resources—to the user. Such games have been extensively
studied [5, 11, 2], usually in the form of zero-sum games.

A closely related line of work involves learning from preferences. For example,
attackers may have particular interests in accessing certain resources. Defenders
therefore seek to learn these preferences. Doing so enables them to potentially
deploy honeypots and other means of deception. Such work, including [6], obtain
learning bounds on the number of interactions required for defenders to learn a
sufficiently accurate estimate of the attacker model.

This work studies richer scenarios with multiple attack vectors. The first of
these is inspired by [15]; here the attacker seeks to obtain credentials via querying
servers, but must deal with honeypot servers that do not tell the truth (like the
spies in [15]). The second involves a preferential model as in [6]. In contrast
to this work, we tackle two additional factors. The first is that defenders must
handle the two attack factors. The second is that the environment is changed by
deployment of honeypots—complicating learning attacker preferences.

3 Setup and Structure

In this work, we consider a system of s servers, of which ℓ are honeypots and µ
are real, and c credentials, of which ρ are fake. Let S denote the set of indices
of all servers, Sh the set of honeypots and Sr the set of real servers. While the

The Credential is Not Enough 3

defender knows the identities of all servers and credentials, the attacker discovers
them over the course of the game. Instead, the attacker only knows that there
are at most tH honeypot servers and tF false credentials.

The i-th server is described by a feature vector xi ∈ Rd
+, which intuitively

may be thought of as the embedding of various features which describe the
server, such as name and location. The attacker has a vector of preferences
within the same embedding space, denoted w ∈ Rd

+. For instance, the attacker
may be interested in servers located in a particular region. Both attacker and
defender observe xi for each server i, while only the attacker knows their own
preference vector w. We say that the attacker’s relative “interest" in a server
i is proportional to wTxi. We refer to the α real servers with highest attacker
interest as the attacker’s desired servers Sd. The game ends when the attacker
performs β accesses to each of the α desired servers.

The attacker may choose one of two strategies: performing queries to learn
the identities of each server and credential, then accessing the desired servers over
the following αβ timesteps, or performing random attacks. If the attacker elects
to perform identity queries, the attacker selects a server i ∈ [s] and credential
j ∈ [c], then poses a question of the form “Server i, is credential j real (R) or
fake (F)?” in each timestep until learning all identities. If instead they perform
random attacks, they access the i-th server with probability

pi =
exp(wTxi)∑

j∈S exp(wTxj)
.

One attack is carried out in each timestep until all αβ goal accesses are per-
formed. When attacking server i, the attacker gains access to a portion of its
private data if i is real; otherwise, the attacker discovers that i is a honeypot.

The attacker gains 1 point each time they complete one of the αβ desired
accesses and loses 1 point each time they attack a honeypot – upon accessing or
querying server i for the j-th time in timestep t, the attacker reward is

Rt(i, j) =

−1 if attack and i ∈ Sh

1 if attack, i ∈ Sd and j < β

0 otherwise.
(1)

Rewards are also multiplied by a discount factor ∆t in timestep t, for 0 < ∆ ≤ 1.
While the identity query strategy avoids the random access strategy’s risk of
penalization from attacking honeypots, this strategy’s accesses may be performed
later than random strategy accesses, and thus encounter lower rewards due to
the discount ∆.

Meanwhile, the defender chooses the x-vectors of their ℓ honeypots, selecting
between honeypot placements that allow the defender to learn a better estimate
W̃ of w and placements that maximize honeypot attack probability. The defender
receives reward −Rt(i, j) in timestep t, forming a zero-sum game.

The remainder of this work is structured as follows. First, we consider the
attacker’s two actions in Section 4. Sections 4.1 and 4.2 discuss the amount of

4 S. Cromp et al.

queries needed for the attacker to learn servers’ and credentials’ identities prior
to performing the αβ desired accesses, while Section 4.3 analyzes the random
attack strategy, determining the the expected number of random attacks needed
to perform the αβ desired accesses. We then discuss the game from the defender’s
point of view in Section 5. This section compares honeypot placement strategies,
establishing a learning bound on the defender’s ability to learn w (and thereby
more effectively target honeypots that lure the attacker) and demonstrating the
defender’s strategies in a simulated game environment.

4 Attacker Strategy

In this section, the defender is fixed such that the x-vectors of honeypots are
held constant. We first study the attacker’s identity query strategy, where the
attacker asks a query of the form, “Server i, is credential j real (R) or fake (F)?”
in each timestep until learning all identities and performing the desired accesses.

We assume that our ℓ honeypots are low-interaction, which implies that they
will always respond with the answer F, whereas the remaining µ real servers will
respond truthfully with either R or F, depending on whether the credential is real
or fake, respectively. As such, a response of R only occurs when i and j are both
real; otherwise the response is F. Only once that the attacker has learned the
identities of all s servers and c credentials can the attacker perform their desired
αβ accesses. Under this setup, Section 4.1 determines the worst-case maximum
number of identity queries until the attacker can perform their desired accesses,
while Section 4.2 finds the average case number of queries. A greater the number
of timesteps prior to the desired accesses will result in a greater time penalty on
the attacker’s positive rewards during the desired accesses in (1).

Lastly, Section 4.3 considers the attacker’s random attack strategy.

4.1 Determining Server and Credential Identities - Worst Case

We refer to the property of a credential being real or fake as the “type” of the
credential. Analogously, we refer to the property of a server being a real server
or a honeypot as the identity of the server. We will study the following problems:

1. How many questions are necessary and sufficient to determine the type of
each of the credentials?

2. How many questions are necessary and sufficient to determine the identity
of each of the servers?

We note that as a result of the symmetry of the game setup, the solutions to both
of these problems is the same, and consequently we will focus on the first prob-
lem. For shorthand, we will refer to the solution to 1) above as Q∗(s, c, tH , tF)
so that after Q∗(s, c, tH , tF) questions, the attacker will always be able to deter-
mine the type of each of the c credentials. For notational convenience, when the
parameters s, c, tH , tF are understood, we will abbreviate Q∗(s, c, tH , tF) as Q∗.

The Credential is Not Enough 5

Our main result is to show that, for the case where tH ≥ tF − 1, at most
Q∗ = tH + tF − 1 + c questions (or queries) are necessary and sufficient. This
implies that, under the scenario where there are roughly as many fake credentials
as honeypots, both types of deception appear to impact the attacker nearly
equally. However, when tH << tF − 1, this trend does not hold. We show in
Section 4.1 that at most only c+O(

√
tF) queries are needed for the case where

tH is a constant. From a defender point of view, this implies that increasing the
number of fake credentials (typically easier) has a similar effect as increasing the
number of honeypots, provided they are roughly comparable in number. In this
setting, introducing either one additional fake honeypot or one additional fake
credential requires the attacker ask one additional query. When tH << tF − 1,
introducing a honeypot appears to be significantly more impactful than a fake
credential. For this setting, introducing one honeypot requires the attacker ask at
most

√
tF additional queries whereas increasing the number of fake credentials in

certain cases only increases the overall number of queries by at most a constant.

Upper Bound on Q∗ In the following, we show that Q∗ ≤ tH + tF − 1 + c.
This result is stated more formally in Lemma 1. Afterwards, for the setting where
tH <

√
tF , we show that this quantity is at most only

√
tF (2tH + 1)+1+ c. We

begin with the following observation, which we state as a claim for clarity.

Claim 1. If server i responds R when queried about credential j, then credential
j is real and server i is a real machine.

The basic idea behind our first approach, which shows Q∗ ≤ tH + tF − 1+ c,
is to ask as few questions as possible in order to produce an answer of R to one of
our questions. Afterwards, we will query this server about the identity of each of
the other c−1 credentials. The output of the following procedure will be the set
CR ⊆ [c], which we will later show, contains the identity of the real credentials.

Initialize CR = ∅. We proceed as follows:

– Step 1: Generate tH + tF + 1 pairs of elements say (i1, j1), (i2, j2), . . . ,
(itH+tF+1, jtH+tF+1) where |{i1, . . . , itH+tF+1}| = |{j1, . . . , jtH+tF+1}| = tH
+ tF +1. (ik, jk) represents the question: “Server ik, is credential jk R or F?”

– Step 2: Starting with question (i1, j1), the attacker asks each of the questions
in the list generated at step 1. Suppose that k∗ is the first question that
generates the response R. Claim 1 implies that server ik∗ is a real machine
and also that credential jk∗ is a real credential. Add jk∗ to the set CR.

– Step 3: If k∗ = tH + tR + 1, then add [c] \ [k∗] to CR. Otherwise, ask server
ik∗ about the credentials {jk∗+1, . . . , jc}. For any k ∈ [c] \ [k∗], if server ik∗

responds R, then add jk to the set CR.
– Step 4: For k ∈ {1, 2, . . . , k∗ − 1} ask server ik∗ about credential jk. For any

k ∈ [k∗ − 1], if server ik∗ responds R, then add jk to the set CR.

We begin with the following observation.

Claim 2. In step 2, k∗ ≤ tH + tF + 1. Furthermore, if k∗ = tH + tF + 1, then
the credentials {jtH+tF+1, jtH+tF+2, . . . , jc} are real.

6 S. Cromp et al.

Note that according to Claim 1, server i∗k has correctly identified c− k∗ + 1
of the m credentials by the end of step 3, which implies that we have not asked
server i∗k about the identity of k∗ − 1 credentials and in particular about the
credentials {1, 2, . . . , k∗ − 1}. We now arrive at the main result of this section.

Lemma 1. For any j ∈ [c], j ∈ CR if and only if credential j is real. The number
of questions asked in steps 1-4 is at most tH+tF−1+c provided c, s ≥ tH+tF+2.

Proof. The fact that the set CR contains the identities of each of the real creden-
tials follows immediately from the previous discussion. The number of questions
asked at steps 1) and 4) are k∗ and k∗ − 1, respectively. Letting q3 denote the
number of questions asked at step 3, the total number of questions is:

2k∗ − 1 + q3. (2)

Here, there are two cases to consider. If k∗ < tH + tF + 1, then q3 ≤ c− k∗ and
(2) is at most c + tH + tF − 1 as desired. Otherwise, if k∗ = tH + tF + 1, then
q3 = 0 and (2) is 2(tH + tF + 1)− 1.

Although the previous approach has the advantage of working for a wide
range of parameter choices for tH , tF , it is far from optimal in many cases. In
particular, for the setting where tH is a constant with respect to tF , it turns out
that a better strategy exists which requires c+O(

√
tF).

For simplicity, we assume that tF is a square, although it is straightforward to
extend to a more general setting. The attacker first chooses a set of tF credentials,
denoted j1, . . . , jtF and partitions this set of credentials into

√
tF groups denoted:

J1 = {j1, . . . , j√tF },
J2 = {j√tF+1, . . . , j2

√
tF },

...
J√

tF = {jtF−
√
tF+1, . . . , jtF }.

Initialize CR = ∅. We proceed as follows.

– Step 1: Generate tF pairs of questions (i1, j1), (i1, j2), . . . , (i1, j√tF),
(i2, j√tF+1), (i2, j√tF+2), . . . , (i2, j2

√
tF), . . . , (i√tF , jtF) where i1, . . . , i√tF

are
√
tF distinct hosts. Starting with (i1, j1) ask each of these tF queries.

– Step 2: Generate an additional (at most) tH
√
tF +1 queries of the form (i, j)

such that for each such query the following holds: (i) Host i has not been
queried previously and (ii) Credential j has not appeared in any previous
queries. If any any point we receive the response T, we proceed to Step 3).

– Step 3: At this point, we have received the response T. Suppose the query
which receives this response is (ik, jk). Insert jk into CR. We next ask the
following

√
tF questions: (i1, jk), (i2, jk), . . . , (i√tF , jk). Let IF denote the

set of servers whose response is F. Go to Step 4).

The Credential is Not Enough 7

– Step 4: For each v ∈ [
√
tF], if iv ∈ IF , then for each j ∈ Jv, we perform the

query (ik, j) and if the response is T, then we add credential j to CR.
– Step 5: For each credential j outside the set j1, j2, . . . , jtF , we perform the

query (ik, j) and if the response if T, we add j to the set CR.

Lemma 2 states that the maximum number of queries necessary to determine
the type of each of the c credentials. First, we present an illustrative example.

Example 1. Suppose tH = 1, and tF = 16. We assume in the following that i1 is
a honeypot and j5, j6, . . . , j16, j17, j18, j19 are fake credentials. According to the
previous procedure, in step 1 suppose we formulate t = 16 queries:

(i1, j1) (i2, j5) (i3, j9) (i4, j13)
(i1, j2) (i2, j6) (i3, j10) (i4, j14)
(i1, j3) (i2, j7) (i3, j11) (i4, j15)
(i1, j4) (i2, j8) (i3, j12) (i4, j16)

 . (3)

More specifically the attacker will first ask the query (i1, j1) followed by (i1, j2)
and so on until we have asked all 16 queries. Since i1 is a honeypot and j5, . . . , j20
are fake, it follows that the response to each of these queries is F.

For step 2, assume the next 5 queries are (i5, j17), (i6, j18), (i7, j19), (i8, j20),
(i9, j21). We will receive the response T on the second to last query since i8 is
not a honeypot and j20 is a real credential. At this point we add j20 to our list
of real credentials and after the query (i8, j20) we will proceed to the third step.

At step 3), we ask (i1, j20), (i2, j20), (i3, j20), (i4, j20). (i1, j20) returns F and
the others return T. Because of the T responses, each of the credentials in the
last 3 columns of (3) are of type fake. Next we proceed to step 4).

At step 4), in order to determine the identity of the credentials in the set
j1, . . . , j20 it suffices to query the host i8 (which we know is not a honeypot)
about each of the credentials in the first column of (3). Since each of these
credentials are by assumption real, it follows that j1, . . . , j4 will be added to CR.

Finally, in step 5) we add each credential outside {j5, j6, . . . , j19} to CR. Note
that this step requires c− 16 additional queries to i8. In all, for each subsequent
step we have performed respectively 16, 4, 4, 4, and c − 16 queries. In total
c + 12 queries which, for this choice of parameters, is less than or equal to
c+

√
tF (2tH + 1) + 1 = c+ 4 · (2 + 1) + 1 = c+ 13 as claimed.

Lemma 2. For the setup where tH <
√
tF and where c, s > tH + tF , the

number of queries to determine the type of each credential is at most Q∗ ≤√
tF (2tH + 1) + 1 + c.

Lower Bound on Q∗ We next turn to the question of optimality and we will
show that for the case where tH ≥ tF − 1, at least tH + tF − 1 + c questions
are also necessary. We can consider our setup as a game, that is being played
between an attacker and Mother Nature (MN) where the attacker is allowed to
ask any questions of the same form as described earlier and Mother Nature is
allowed to fix the identities and types of each of the servers and credentials.

8 S. Cromp et al.

The main challenge, which we focus on now, is to establish the result for the
case where tH = tF −1. Our key technical result is described in the next lemma.

Lemma 3. Suppose the attacker asks tH + tF − 1 queries and, among these
queries, there are exactly c0 credentials contained across the tH + tF −1 queries.
Then, in order to determine the identity of these c0 credentials, there exists an
assignment of identities to credentials and servers by MN such that c0 additional
queries are necessary.

Under our setup, we assume that MN always assigns at most tH honeypots
and at tF − 1 fake credentials to ensure that the first tH + tF − 1 queries receive
the response F where during these first tH + tF − 1 queries at least tH + 1
servers are queried and at least tH + 1 credentials are also queried. Note that
this scenario is always indeed possible since it can be the case that the first tH
hosts queried are honeypots and the following tF − 1 = tH credentials queried
are of type fake. Using the result stated in the previous lemma, we will show
in Theorem 1 that an additional c0 queries are necessary to determine the first
c0 credentials that were queried along with an additional c − c0 queries (which
each pertain to credentials outside the first c0 queried), implying a total of
tH + tF − 1 + c0 + (c− c0) = tH + tF − 1 + c queries are necessary.

In order to tackle this problem, we will visualize the first tH + tF − 1 queries
by means of edges in a bi-partite graph where the vertices on the left side of this
graph, which we denote as VS , represent each of the servers queried in the first
tH + tF − 1 queries and the vertices on the right hand side of the graph, which
we denote as VC , represent the credentials queried in the first tH+tF −1 queries.
There exists an edge between vertex i on the left side of the graph and vertex j
on the right hand side of the graph if the attacker asks the question (i, j). We
illustrate this setup by means of the next example. For shorthand, we refer to
this graph as the question graph G for the game.

Example 2. Suppose the attacker asks (i1, j1), (i2, j2), (i1, j3), (i3, j2). Then, the
question graph G that represents this sequence of questions is shown below:

i1

i2

i3

j1

j2

j3

For our analysis, we assume that the first tH + tF − 1 queries, which by
assumption all have received the response F, are fixed before the start of the
game. We say that the question sequence Q belongs to G if for every query in Q
either the server queried or the credential queried about (or both) are contained
in G and we represent this as Q ∈ G. As will be discussed in Claim 6, we assume
that when a query contains either a host or credential not represented in G, then
their identity is not labeled F. Conceptually, the questions in Q are questions
that are asked by an attacker (after the initial tH + tF − 1 queries) that can be
used to recover the identity of each credential in G.

The Credential is Not Enough 9

The graph G will always have tH + tF − 1 edges. Given the graph G, we can
recast our problem as a labeling game for MN where she can label at most tH
vertices in VS to be F (which means they’re honeypots) and at most tH vertices
in VC to be F (which means the corresponding credential is of type fake). In
order to make this a binary labeling, we will assume the other vertices that are
not labeled F are labeled R. The goal will be to show that for any given G and
Q, there exists a labeling procedure, denoted by the function L, which takes as
input G and Q and outputs a labeling L(G,Q) such that:

1. The labeling L(G,Q) is consistent - This means that for any edge in the
question graph G at least one vertex in that edge is labeled F under L(G,Q).

2. The labeling procedure L(G,Q) is robust - If |Q| < |VC | it is not possible
for the attacker to ascertain the identity of each credential in G by asking
the queries in Q and G.

Note that in order to satisfy the consistency constraint, for any edge (i, j) ∈ EG
(where EG represents the edge set for the question graph G), either i is labeled
F or j is labeled F or both. Note also that if i is labeled R and (i, j) ∈ EG , then
it follows under our setup that j must be labeled F and vice versa.

Next, we introduce notation addressing robustness. Let D be a decoding rule
such that given Q along with a sequence of responses FR to each of the queries
in Q, the output of D is the set of credentials whose identities are known. Given
an assignment of identities to the vertices in G, the response from each of the
servers is deterministic. We capture this relationship by letting FR be a function
which takes as input the assignment of identities to servers and credentials. The
robustness property of L requires that for any sequence of queries Q ∈ G of
cardinality less than |VC |, there exists a labeling L(G,Q) such that

|D (Q, FR (L(G,Q)))| < |VC |. (4)

Thus, the goal will be to show that there exists a labeling procedure L, which
is consistent and robust. With an abuse of notation, we will also say that a
labeling for a particular graph G and a particular set of queries Q is consistent
with respect to G if each edge in G has a vertex labeled F. Furthermore, for a
specific question sequence Q, we will say that the labeling is robust with respect
to G,Q if (4) holds provided |Q| < |VC |.

The next three claims, whose proofs are deferred for the extended version of
the paper, will be useful in our subsequent derivations and in particular will be
invoked in the proof of Lemma 4. Let LtH ,tF−1(G,Q) be a labeling procedure
that assigns at most tH F labels to vertices in VS and tF − 1 F labels to vertices
to vertices in VC . When it is clear from the context, the parameters tH , tF − 1
may be omitted from the notation for the labeling procedure L.

Claim 3. Let G′ be a question graph and Q ∈ G′ be a question sequence where
G′ has vertex set VS ∪ VC and G′ has edge set EG′ . Let G = G′ + e1, e2 where
e1 = (i1, j1), e2 = (i2, j2) and where the degree of any vertex in G′ is at most
tH and j1 ̸= j2. If, for any sequence Q there exists a labeling LtH−1,tF−2(G′, Q),

10 S. Cromp et al.

which is consistent and robust with respect to G′,Q, then there exists a labeling
LtH ,tF−1(G,Q) that is consistent and robust with respect to G,Q.

Claim 4. Suppose tH = tF − 1 and G is a question graph after tH + tF − 1
queries by the attacker where |VC | ≥ tH + 1, |VS | ≥ tH + 1, and at most one
vertex in VC has degree at least 2 and the remaining vertices in VC have degree
one. For any question sequence Q ∈ G, there exists a labeling that is consistent
and robust with respect to G,Q.

Claim 5. Let G be a question graph where there exists v∗ ∈ VS with degree tH
and where each neighbor of v∗ has degree exactly one. For any question sequence
Q ∈ G, there exists a labeling that is consistent and robust with respect to G,Q.

We now aim to prove Lemma 3 by induction on tH = tF − 1 and the next
claim considers the base case. Recall that for now, we assume the degree of each
vertex in VC is less than tH +1 after the initial tH + tF −1 queries. We will show
later that when this restriction is removed the result still holds afterwards.

Claim 6. Suppose tH = tF −1 = 1, G is the question graph after tH+tF −1 = 2
queries by the attacker where |VC | ≥ tH + 1 = 2 and |VS | ≥ tH + 1 = 2. Then,
there exists a labeling procedure that is consistent and robust.

Using the previous claim, we have the following lemma.

Lemma 4. Suppose tH = tF −1 > 1 and G is a question graph after tH + tF −1
queries by the attacker where |VC | ≥ tH + 1, |VS | ≥ tH + 1, and the degree of
any vertex in G is at most tH . Then, for any question sequence Q, there exists
a labeling procedure that is consistent and robust.

Proof. The proof will be by induction on tH (and tF − 1) where the base case
was proven in Claim 6. Suppose the result holds for all tH , tF − 1 ≤ L and
consider the case where tH = tF − 1 = L+ 1. Let G′ denote the question graph
if we remove two edges (or queries) from G where j1 ̸= j2. By the induction
hypothesis, G′ has a labeling procedure that is consistent and robust. If G′ has
any unconnected vertices, we remove those from the graph as well. For the case
where there exists a vertex v ∈ VC or v ∈ VS with degree tH then one of the
edges removed from G must be adjacent to v. Because |VC |, |VS | ≥ tH + 1, there
can be at most one vertex in VC with a degree tH and at most one vertex in VS
with degree tH . Let E = {(ir1 , jr1), (ir2 , jr2)} denote the set of two vertices that
were removed from G to obtain G′ where we require that jr1 ̸= jr2 .

Next we consider the choice of the two edges in E . If there is a choice of
edges such that no vertices are isolated by their removal, then the vertex sets of
G and G′ are the same and the result follows from Claim 3. Next, we consider
the case where at least one vertex in VC appears in G but not G′. Note that if
this scenario occurs, then one of the following holds:

1) All the vertices in VC have degree one,
2) There is exactly one vertex in VC that has degree at least two and the re-

maining have degree one, or

The Credential is Not Enough 11

3) G contains a vertex v ∈ VS that has degree tH and each neighbor of v has
degree exactly one.

1) and 2) fall under the conditions of Claim 4. 3) is handled by Claim 5.
Next, we consider scenarios where there appears at least one vertex from

VS that appears in G but not G′ as a result of removing edges (ir1 , jr1), (ij2 , jr2)
where jr1 ̸= jr2 . This result can be proven using similar logic to Claim 3. Suppose
that Q ∈ G is any valid question sequence Q ∈ G. Let Q′ ⊆ Q be such that
Q′ ∈ G′. Note that Q′ is simply the result of removing at most two queries that
involve either ir1 , ir2 and some credential outside G. By the inductive assumption,
there exists a labeling which is consistent and robust with respect to G′, Q′.
Suppose v ∈ G′ (v ∈ G as well) represents a credential which is unknown given
the queries G′,Q′. If v is not adjacent to ir1 , ir2 and it is not equal to j1, j2, then
setting ir1 , jr2 to be F results in a labeling which is robust and consistent with
respect to G,Q. If v is adjacent to ir1 , then setting ir1 to be F and jr2 to be
F results in a robust and consistent labeling. Otherwise, if v is adjacent to ir2
setting ir2 to be F and jr1 to be F results in a robust and consistent labeling.

Theorem 1. In order to identify the identity of all c credentials, there exists a
strategy for MN that always requires the attacker to ask at least tH + tF − 1 + c
questions when tH = tF − 1.

Proof. Suppose first that there exists a vertex v ∈ VS that is queried tH+1 times.
Then in this case, we can assume MN labels v to be F. Furthermore, if MN labels
the next tH−1 servers to be F, then it follows that at least tH+1+(tH−1)+c =
c + tH + tF − 1 queries are necessary. Similarly, if there exists a vertex v ∈ VC
that is queried tH + 1 times then we can also assume v is labeled F and so
given tH + 1 queries the attacker will have identified exactly one credential.
We can assume that MN labels the next tH honeypots queried to be F, which
implies in this case that an additional tH queries are required. Finally, since at
this point, the attacker has recovered the identity of only a single credential,
the attacker needs to produce an additional c − 1 queries implying a total of
tH +1+ tH +(c− 1) = c+ tH + tF − 1 queries are necessary in this case as well.

As a result of the logic in the previous paragraph, we can assume that cre-
dential is queried at most tH times and each server is also queried at most tH
times, which means we can invoke Lemma 3. Suppose that given this setup,
the first tH + tF − 1 queries each receive F from the attacker and the following
query receives T. Then according to Lemmas 3 and 4, in order to determine the
set of c0 credentials asked about during the first tH + tF − 1 queries at least
another c0 queries are necessary. Since among these c0 credentials there are at
most tF − 1 fake credentials, the attacker must also query each of the remain-
ing c − 1 − c0 credentials to determine their identity implying that a total of
tH + tF − 1 + 1 + c0 + (c− 1− c0) = c+ tH + tF − 1 queries are necessary.

The next result follows by induction on tH with base case in Theorem 1.

Corollary 1. For tH ≥ tF−1, there exists a strategy for MN that always requires
the attacker to ask at least tH + tF − 1 + c questions.

12 S. Cromp et al.

4.2 Determining Server and Credential Identities - Average Case

In this section, we derive an explicit expression for the expected number of
queries that are sufficient to determine the identity of each of the fake credentials
provided the strategy outlined in Lemma 1. Recall we have s servers, of which ℓ
are honeypots along with c credentials among which there are ρ that are fake.

First, we compute the probability that we can use exactly k+1 questions to
obtain the first T response. This means that the first k questions in our strategy
either have a fake credential, a honeypot, or both. Suppose that of these, j of
the k questions involve a fake credential, and the remaining k − j involve a
true credential. This constrains these last k − j to use a honeypot, while the j
questions involving a fake credential can have a true or honeypot server.

Next, we count the ways we can obtain the credentials. This is just
(
ρ
j

)(
c−ρ
k−j

)
,

where the two coefficients select from the false and then true credentials. Next,
we must allocate the servers. Recalling our constraint, the k− j questions with a
true credential must be allocated to k− j of ℓ honeypots, while the remaining j
servers can be either real or honeypots. Suppose u of these j servers are chosen
as honeypots. This gives

(
ℓ

k−j+u

)(
s−ℓ
j−u

)
. Further, there are

(
j
u

)
ways of ordering

the two types of servers paired with fake credentials relative to each other.
Our focus thus far has been aimed at getting an F response for the first k

questions. We need to now obtain T for the k + 1st question. This means using
remaining true credentials and true servers, of which we now have (c− ρ− (k−
j))× (s− ℓ− (j − u)). Next we must sum over the possibilities j and u, so that
our overall number of ways to select the questions is given by Bk =

k∑
j=0

j∑
u=0

(
ρ

j

)(
c− ρ

k − j

)(
ℓ

k − j + u

)(
s− ℓ

j − u

)(
j

u

)
(c−ρ− (k−j))× (s−ℓ− (j−u)),

noting, of course, that there are cases where these coefficients reduce to zero
simply because there are insufficient credentials or questions to allocate.

The probability that we obtain the first T response on the (k+1)-th question
is simply the number of possible sequences of k F responses followed by one
T response divided by the number of sequences of F responses of any length
followed by one T response, i.e. Pk =

∑t+ℓ
i=0

Bk

Bi

Further, after the first “true” answer at the (k+1)-th query, we must perform
c−1 more queries to identify the remaining credentials. As such, c+k questions
are required in total which yields an expected number of questions

E[Q] =

ρ+ℓ∑
k=0

(c+ k)Pk. (5)

4.3 Attacker Random Access Strategy

We next analyze the game scenario in which the attacker repeatedly performs
random accesses. Holding all honeypots constant, we bound the expected num-
ber of timesteps for the attacker to complete their αβ desired accesses. Let Tα,β

The Credential is Not Enough 13

denote this quantity of timesteps. Then, the attacker can select between pursu-
ing this all-access strategy (incurring E[Tα,β] accesses on average) or pursuing
Section 4.1’s all-credential querying strategy (incurring E[Q]as defined in Equa-
tion (5), plus αβ). Below, we provide bounds on E[Tα,β].

Fig. 1: # of questions used to learn identities of all credentials given average,
worst, or best case, varying quantity of honeypots or fake credentials respectively.

Let pi be the probability the real server with the i-th highest value of wxi is
accessed. Further, let p0 equal the probability a honeypot or real server outside
the top α is accessed. Clearly,

∑α
i=0 pi = 1, while the probability of a desired

αβ access at the first timestep is no less than αpα and no greater than αp1.

Theorem 2 (Necessary and sufficient total number of accesses). Let
h(α, β) = logα+(β− 1) log logα− log log (β − 1)! +C. Then, for a constant C,

1

p1
h(α, β) ≤ E[Tα,β] ≤

1

pα
h(α, β).

Proof. Let να,β be the total number of accesses to the α desired servers in order
for each server to have β accesses, and let P (p0 = η − π, να,β = π) be the
probability that out of η accesses, η − π are to p0 and the remaining π are
enough to complete the desired accesses. Where line 2 follows by the binomial
theorem and using p1 as an upper bound for the probability that any one desired
server is accessed (i.e. p1 = maxi∈[α]pi

), we have that P (Tα,β = η) =

η∑
π=αβ

P (p0 = η − π, να,β = π) ≤
η∑

π=αβ

(
η − 1

η − π

)
(1− αp1)

η−π(αp1)
πP (να,β = π)

=

η∑
π=αβ

(
η − 1

η − π

)
(1− αp1)

η−π(αp1)
π×

[
exp

(
−e−(π−rα,β)/α

β!

)
− exp

(
−e−(π−rα,β−1)/α

β!

)]
,

14 S. Cromp et al.

for rα,β = α logα + αβ log logα. Line 3 follows by [9], who also show that
E[να,β] = α logα+α(β−1) log logα−α log log (β − 1)!+αC. Therefore, E[Tα,β] ≤
1

αp1
(α logα+ α(β − 1) log logα− α log log (β − 1)! + αC).

E[Tα,β] ≤
1

αp1
(α logα+ α(β − 1) log logα− α log log (β − 1)! + αC)

=
1

p1
(logα+ (β − 1) log logα− log log (β − 1)! + C) =

1

p1
h(α, β).

The same process, with pα to lower bound any one desired server’s ac-
cess probability, gives that P (Tα,β = η) ≥

∑η
π=αβ

(
η−1
η−π

)
(1 − αpα)

η−π(αpα)
π ∗[

exp
(
− e−(π−rα,β)/α

β!

)
− exp

(
− e−(π−rα,β−1)/α

β!

)]
, so E[Tα,β] ≥ 1

pα
h(α, β).

5 Defender Strategy

We next analyze the game from the defender’s perspective. While real servers are
held constant, the defender will design honeypots to “mimic" the real servers:
dynamically setting xi = xj for honeypot i and real server j to confuse and
distract the attacker. For simplicity, the attacker is fixed to perform random
accesses; we save the attacker’s identity query strategy for future work.

We will demonstrate that specific honeypot placements are most effective for
exploiting knowledge of the attacker’s preferences, while other honeypot place-
ments are most effective for gaining knowledge of the attacker’s preferences.
Specifically, setting honeypot server i to mimic real server j with maximum
attack probability increases the chance of the honeypot being attacked. This
is an “exploit” action. However, the defender must form an estimate W̃ of the
attacker’s preferences w to determine which server is max. As we shall see, mim-
icking servers with low attack probabilities enables faster rates of learning. This
is an “explore” action, where the reward is not maximized in the short term.

We begin by providing theoretical results on the defender’s ability to learn the
attacker preferences w in Section 5.1. Then, Section 5.2 validates our theoretical
results using a simulation, demonstrating that the defender stalls the attacker
from finishing their desired accesses by an average of 5.8% timesteps and scores
an average of 32% points more than a defender baseline with constant honeypots.

5.1 Theoretical Results

We bound the expected preference estimation error E[||W̃ −w||] in terms of pa-
rameters such as the number of timesteps and servers. For notational simplicity,
we shall make the following assumption: the defender may change one honey-
pot’s x-vector every τ interactions between the attacker and defender. Let T
denote the total number of periods with constant honeypot values. Though the
final time period may be shorter than τ timesteps if the attacker completes their
αβ desired accesses prior to the period’s τ -th timestep, we suppose for simplic-
ity that all periods contain τ steps. However, all results are easily modified to
accommodate a shorter final time period.

The Credential is Not Enough 15

Estimating Attacker Preferences First, we outline a procedure for the de-
fender to form their estimate W̃ . Concretely, suppose that each honeypot takes
on the x-value of a real server. While there are consequences on the reward when
the attacker accesses real server i versus a honeypot server with vector xi (i.e.,
if the honeypot is sampled by the attacker, the defender has a positive reward),
there is no difference from the point of view of learning w. For this reason, we
can restrict the learning problem to operate on x1, . . . , xµ, where µ = |Sr|, the
number of real servers. Let bki be the total number of servers, real or honeypot,
that have value xi in time period 1 ≤ k ≤ T , so that

∑
j∈[µ] b

k
j = µ+ ℓ = s and

that 1 ≤ bkj ≤ 1 + ℓ for all j. Then, the distribution pk in time period k is

pki =
bki exp(w

Txi)∑
j∈S bkj exp(w

Txj)
. (6)

The defender will run the following algorithm: for the k-th time period, let aki
be the number of observed attacks on any of the bki servers with x-vector equal
to that of the i-th real server. The defender will estimate the attack distribution
as p̃ki = aki /τ for all 1 ≤ i ≤ µ, then apply smoothing with a small constant
ω so that p̃ki > 0. Smoothing avoids dividing by 0 in the learning process. The
defender will then form and solve a system as in [8], i.e., Aw̃k = Ỹ k for

A =

x1 − x2

x2 − x3

. . .
xµ−1 − xµ

 and Ỹ k =

log(p̃k1/p̃

k
2)

log(p̃k2/p̃
k
3)

. . .
log(p̃kµ−1/p̃

k
µ)

−

log(bk1/b

k
2)

log(bk2/b
k
3)

. . .
log(bkµ−1/b

k
µ)

 .

In order to perform linear least squares, we assume µ−1 ≥ d. This will produce an
estimate w̃k for each period. The final estimate is then just W̃ = 1/T

∑T
k=1 w̃

k.

Preference Learning Bound At first glance, the learning bound in [8] appears
to have a similar flavor, where we could use the τT observed interactions to
obtain a bound on ∥W̃ −w∥. Critically, this result does not apply to our setting,
because the distributions of our samples are different in each of the T periods
due to the varying bk. Instead, we find

Theorem 3. Let B = (ATA)−1AT . Further, let g(pk, δ) = c21||B||2 log2
(

2Tµ
δ

)
∑µ

j=1
1

(pk
j)

4 for constant c1 and kmax = argmaxk g(p
k, δ). Then, the defender can

learn an estimate W̃ that with probability at least 1− δ satisfies E[∥W̃ − w∥] ≤

1

τT

√√√√log(d+ 1)

T∑
k=1

g(pk, δ) +
2 log(d+ 1)

3τT

√
1

8
g(pkmax , δ) +

1

τT

T∑
k=1

√
1

8
g(pk, δ)

16 S. Cromp et al.

Interpreting the Bound. Before tackling the proof, we make some remarks. First,
there are three summands in the bound. The scaling with respect to game length
for the first two summands is given by O(1

τ
√
T
), for the second by O(1

τT) and
for the third by O(1/τ). To see this, note that we are summing over T terms in
the first and third summand. In the first, this is inside the square root, while
in the third, there is no square root, canceling the 1/T in front. Therefore, the
third term is dominant. However, when τ > T , we have that 1

τ < 1√
τT

so that
we obtain the same overall learning rate as if all the distributions were identical.

Next, consider the term g(pk, δ). We have that E[∥W̃−w∥] scales with µT (the
product of the number of periods with the number of genuine servers), though
the factor is only squared-logarithmic. A more interesting term is

∑µ
j=1

1
(pk

j)
4 .

The learning rate is worse when particular probabilities pkj are small. In fact, to
obtain the best learning rate, the defender would want a uniform distribution.
To this end, the defender may design their honeypots so as to cause pk to most
closely resemble the uniform distribution.

The last observation translates into a simple “explore” strategy for the de-
fender. Given ℓ total honeypots, and that

∑
j b

k
j = µ + ℓ, the defender should

allocate bki ’s so the resulting model in (6) is as close to uniform as possible.
We now prove the result. The following lemma will prove useful.

Lemma 5. For any k, with probability at least 1− δ, it holds that

||E[w̃k − w]|| ≤ E[||w̃k − w||] ≤ ∥B∥c1
τ

log

(
2µT

δ

)√√√√1

8

µ∑
j=1

1

(pkj)
4
.

Proof (Proof of Lemma 5). Observe that w̃k = BỸ k and w = BY k, where Y k

is analogous to Ỹ k for pk. Let eki = p̃ki − pki . Then,

w̃k − w = B

log(

p̃k
1

p̃k
2
)

. . .

log(
p̃k
µ−1

p̃k
µ

)

−B

log(

pk
1

pk
2
)

. . .

log(
pk
µ−1

pk
µ

)

 = B

log(1 +

ek1
pk
1
)− log(1 +

ek2
pk
2
)

. . .

log(1 +
ekµ−1

pk
µ−1

)− log(1 +
ekµ
pk
µ
)

 .

So,
E[∥w̃k − w∥]

∥B∥
≤ E

∥∥∥∥∥∥∥∥

log(1 +
ek1
pk
1
)− log(1 +

ek2
pk
2
)

. . .

log(1 +
ekµ−1

pk
µ−1

)− log(1 +
ekµ
pk
µ
)

∥∥∥∥∥∥∥∥

= E

√√√√µ−1∑

j=1

(
log

(
1 +

ekj
pkj

)
− log

(
1 +

ekj+1

pkj+1

))2

≤ E

√√√√µ−1∑
j=1

log2

(
1 +

ekj
pkj

)
+ log2

(
1 +

ekj+1

pkj+1

) ≤ E

√√√√2

µ∑
j=1

log2

(
1 +

ekj
pkj

)

The Credential is Not Enough 17

and by Jensen’s inequality, since E[·1/2] ≤ E[·]1/2,

E[∥w̃k − w∥] ≤ ∥B∥E

2 µ∑
j=1

log2

(
1 +

ekj
pkj

)1/2

. (7)

We will now derive a bound on log2
(
1 +

ekj
pk
j

)
. From Hoeffding’s inequality

[10], we have P (|ekj | ≥ ϵ) = P (|p̃kj − pkj | ≥ ϵ) ≤ 2 exp(−2τϵ2). Suppose we want

P (|ekj | ≤ ϵ) with probability 1−δ, then δ = 2 exp(−2τϵ2) so that ϵ =
√

1
2τ log 2

δ .
We next apply union bound to simultaneously control the deviations for all µT
probabilities pkj . With probability at least 1 − δ, we have for all 1 ≤ j ≤ µ and

for all 1 ≤ k ≤ T that |ekj | ≤
√

1
2τ log 2µT

δ .

Note that E[|ej |] = 0, so by the Taylor expansion and for some constant c1,

E

[
log

(
1 +

ekj
pkj

)]
= E[

∞∑
i=1

(−1)i+1 1

i

(ekj)
i

(pkj)
i
] =

∞∑
i=2

(−1)i+1 1

i

E[(ekj)i]
(pkj)

i

≤
∞∑
i=2

(−1)i
1

i

E[(ekj)i]
(pkj)

i
=

1

2(pkj)
2
E[|ej |]2 +

∞∑
i=3

(−1)i
1

i

E[(ekj)i]
(pkj)

i

≤ c1
2(pkj)

2

√
1

2τ
log

2µT

δ

2

=
c1

4τ(pkj)
2
log

2µT

δ
.

Since E[log2(·)] = E[| log(·)|]2 = E[log(·)]2, from (7) and linearity,

E[∥w̃k − w∥] ≤ ∥B∥

2 µ∑
j=1

c21
16τ2(pkj)

4
log2

2µT

δ

1/2

= ∥B∥c1
τ

log

(
2µT

δ

)√√√√1

8

µ∑
j=1

1

(pkj)
4

Lastly, ||E[w̃k − w]|| ≤ E[||w̃k − w||] by Jensen’s inequality.

Proof (Proof of Theorem 3). We will bound E[||W̃ −w||] using the matrix Bern-
stein inequality [14]. We first define and bound Sk = (w̃k−w)−E[w̃k−w]. This
is a centered version of the error from estimating w̃k in one period k. E[Sk] = 0
and E[∥Sk∥] ≤ E[∥w̃k − w∥] + ∥E[w̃k − w]∥ ≤ 2E[∥w̃k − w∥]. By Lemma 5,

E[||Sk||] ≤ 2∥B∥c1
τ

log

(
2µT

δ

)√√√√1

8

µ∑
j=1

1

(pkj)
4
:= Lk.

Let kmax = argmaxk Lk. Note that E[||Sk||2] = E[||Sk||]2. Next, define Z =∑T
k=1

1
T S

k, so that E
[
||Z||2

]
= E

[∣∣∣∣∣∣∑T
k=1

1
T S

k
∣∣∣∣∣∣2] =∑T

k=1
1
T 2E

[
||Sk||2

]
. This

follows since the cross terms are products of uncorrelated terms with zero mean.

18 S. Cromp et al.

By the matrix Bernstein inequality [14] applied to a d-element vector, E[||Z||] ≤√
2E[||Z||2] log(d+ 1) +

Lkmax

3T log(d+ 1), we obtain

E[||Z||] ≤

√√√√2 log(d+ 1)

T∑
k=1

1

T 2
E[||Sk||2]

+
2

3T
log(d+ 1)∥B∥c1

τ
log

(
2µT

δ

)√√√√1

8

µ∑
j=1

1

(pkmax
j)4

≤ c1
τT

∥B∥ log
(
2µT

δ

)√√√√log(d+ 1)

T∑
k=1

µ∑
j=1

1

(pkj)
4

+
2

3T
log(d+ 1)∥B∥c1

τ
log

(
2µT

δ

)√√√√1

8

µ∑
j=1

1

(pkmax
j)4

.

Ultimately, E[||W̃ − w||] =

1

T
E

[∥∥∥∥∥
T∑

k=1

(w̃k − w)

∥∥∥∥∥
]
=

1

T
E

[∥∥∥∥∥
T∑

k=1

(w̃k − w − E[w̃k − w] + E[w̃k − w])

∥∥∥∥∥
]

=
1

T
E

[∥∥∥∥∥
T∑

k=1

(Sk + E[w̃k − w])

∥∥∥∥∥
]

≤ 1

T
E

[∥∥∥∥∥
T∑

k=1

Sk

∥∥∥∥∥+
∥∥∥∥∥

T∑
k=1

E[w̃k − w]

∥∥∥∥∥
]

= E [∥Z∥] + 1

T

∥∥∥∥∥
T∑

k=1

E[w̃k − w]

∥∥∥∥∥ ≤ E [∥Z∥] + 1

T

T∑
k=1

∥∥E[w̃k − w]
∥∥ .

Substituting for E[||Z||] and ||E[w̃k − w]|| (from Lemma 5) gives the result.

5.2 Simulation

We implement the defender strategy with a simple thresholding heuristic: the
defender begins by exploring in each time period, then switches to exploiting
after the first time period k for which ||w̃k−w̃k−1|| is less than a hyperparameter
ϵ. We use hyperparameters s = 4, ℓ = 1, d = 2, τ = 100, ϵ = 0.1, ∆ = 1, α = 2
and β = 4000. Further, we use a simplified reward scheme where the defender
loses no points when the attacker completes a desired access. We compare our
strategy, “mimic explore/exploit" with a constant strategy where the honeypot
is set to mimic a random real server at the beginning of the game, as well as a
“mimic explore" strategy where the defender never exploits. See Table 1 for a
summary; results are averaged across 100 runs.

The Credential is Not Enough 19

Fig. 2: Preference estimation error ∥W̃ k −w∥ across 1500 time periods (τ=100).
We find that the explore strategy achieves lowest error, while explore/exploit
achieves highest and the constant strategy serves as a middle ground.

For ease of comparison, we first fix each run to last T = 1500 time periods.
Figure 2 depicts ||W̃ k −w||, the error in estimating attacker preferences, across
time periods. As expected, the mimic explore strategy consistently achieves the
smallest preference estimation error. Mimic explore/exploit begins with com-
parable performance to mimic explore, but it soon plateaus as it switches to
exploiting at time period 741 on average (σ = 446). Despite that, mimic ex-
plore/exploit ultimately does not estimate preferences as well as the constant
method, explore/exploit method achieves the highest average score as shown by
Figure 3b. Figure 3a demonstrates that, as mimic explore/exploit switches to
exploit, it soon overtakes both mimic explore and constant strategies in encour-
aging the attacker to access the honeypot. Explore/exploit is able to effectively
leverage the knowledge gained during explore phase – applying it during exploit
phase and scoring an average of 32% more points than constant defender.

We lastly examine game length, an alternative metric for measuring the ef-
fectiveness of honeypot placements in slowing the attacker’s progress. Mimic ex-
plore/exploit strategy prolongs the attacker from achieving their goal the longest,
requiring an average of 5.8% more time periods than the constant method.

Periods to complete
desired accesses

Final preference
estimation error Final score

Mimic explore/exploit 1932.81 (16.18) 0.054 (0.019) 43613.80 (1426.84)
Mimic explore 1756.01 (6.97) 0.025 (0.012) 33038.49 (176.22)
Constant 1826.59 (90.52) 0.040 (0.029) 38015.75 (5544.89)

Table 1: Standard deviation in parenthesis

20 S. Cromp et al.

(a) During first 200 time periods. (b) During 1500 time periods.

Fig. 3: Defender reward during first 200 or 1500 periods. While explore/exploit
performance initially matches the lowest-scoring explore strategy, it surpasses
the constant strategy as it switches to exploit, with widening performance gap.

References

[1] Palvi Aggarwal, Cleotilde Gonzalez, and Varun Dutt. “Cyber-security: Role of
Deception in Cyber-Attack Detection”. In: July 2016.

[2] J. Zhang et al. “Modeling multi-target defender-attacker games with quantal
response attack strategies”. In: Reliability Engineering System Safety (2021).

[3] Ronald M. Campbell et al. “A survey of honeypot research: Trends and oppor-
tunities”. In: ICITST (2015), pp. 208–212.

[4] Y. Wang et al. “A Survey of Game Theoretic Methods for Cyber Security”. In:
IEEE Intl. Conf. on Data Science in Cyberspace. 2016, pp. 631–636.

[5] J. Pawlick et al. “A game-theoretic taxonomy and survey of defensive deception
for cybersecurity and privacy”. In: ACM Computing Surveys 52.4 (2019).

[6] Mark Bilinski, Ryan Gabrys, and Justin Mauger. “Optimal placement of honey-
pots for network defense”. In: GameSec. 2018, pp. 115–126.

[7] Mark Bilinski et al. “Lie another day: Demonstrating bias in a multi-round cyber
deception game of questionable veracity”. In: GameSec. 2020, pp. 80–100.

[8] Mark Bilinski et al. “No Time to Lie: Bounds on the Learning Rate of a Defender
for Inferring Attacker Target Preferences”. In: GameSec. 2021, pp. 138–157.

[9] Paul Erdős and Alfréd Rényi. “On a classical problem of probability theory”. In:
Magyar Tud. Akad. Mat. Kutató Int. Közl (1961), pp. 215–220.

[10] Wassily Hoeffding. “Probability inequalities for sums of bounded random vari-
ables”. In: The collected works of W. Hoeffding (1994), pp. 409–426.

[11] T. Nguyen et al. “Deception in finitely repeated security games”. In: AAAI. 2019.
[12] Aaron Schlenker et al. “Deceiving Cyber Adversaries: A Game Theoretic Ap-

proach”. In: IFAAMAS. 2018, pp. 892–900.
[13] Nan Sun et al. “Data-Driven Cybersecurity Incident Prediction: A Survey”. In:

IEEE Communications Surveys Tutorials 21.2 (2019), pp. 1744–1772.
[14] Joel A Tropp et al. “An introduction to matrix concentration inequalities”. In:

Foundations and Trends® in Machine Learning (2015), pp. 1–230.
[15] Mark Wildon. “Knights, spies, games and ballot sequences”. In: Discrete Math-

ematics 310.21 (2010), pp. 2974–2983.

